Skip to main content
Log in

Hydrostratigraphy and hydrogeology of the western part of Maira area, Khyber Pakhtunkhwa, Pakistan: a case study by using electrical resistivity

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Hydrostratigraphy and hydrogeology of the Maira vicinity is important for the characterization of aquifer system and developing numerical groundwater flow models to predict the future availability of the water resource. Conventionally, the aquifer parameters are obtained by the analysis of pumping tests data which provide limited spatial information and turn out to be costly and time consuming. Vertical electrical soundings and pump testing of boreholes were conducted to delineate the aquifer system at the western part of the Maira area, Khyber Pakhtun Khwa, Pakistan. Aquifer lithology in the eastern part of the study area is dominated by coarse sand and gravel whereas the western part is characterized by fine sand. An attempt has been made to estimate the hydraulic conductivity of the aquifer system by establishing a relationship between the pumping test results and vertical electrical soundings by using regression technique. The relationship is applied to the area along the resistivity profiles where boreholes are not drilled. Our findings show a good match between pumped hydraulic conductivity and estimated hydraulic conductivity. In case of sparse borehole data, regression technique is useful in estimating hydraulic properties for aquifers with varying lithology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Akaolisa, C. (2006). Aquifer transmissivity and basement structure determination using resistivity sounding at Jos Plateau state Nigeria. Environmental Monitoring and Assessment, 114, 27–34.

    Article  Google Scholar 

  • Akhter, G., Farid, A., & Ahmed, Z. (2012). Determining the depositional pattern by resistivity-seismic inversion for the aquifer system of Maira Area, Pakistan. Environmental Monitoring and Assessment, 184, 161–170.

    Article  CAS  Google Scholar 

  • Alile, O. M., Amadasun, C. V. O., & Evbuomwan, A. I. (2008). Application of vertical electrical sounding method to decipher the existing subsurface stratification and groundwater occurrence status in a location in Edo North of Nigeria. International Journal of Physical Sciences, 3(10), 245–249.

    Google Scholar 

  • Archie, G. E. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the American Institute of Mining and Metallurgical Engineers/Petroleum Division, 146, 54–62.

    Google Scholar 

  • Baharuddin, M. F. T., Talib, S., Hashim, R., Abidin, M. H. Z., & Ishak, M. F. (2011). Time-lapse resistivity investigation of salinity changes at an ex-promontory land: a case study of Carey Island, Selangor, Malaysia. Environmental Monitoring and Assessment, 180, 345–369.

    Article  CAS  Google Scholar 

  • Bear, J. (1972). Dynamics of fluids in porous media. Dynamics of fluids in porous media. New York: American Elsevier.

    Google Scholar 

  • Bloemendaal S., & Sadiq M. (1985). Technical report on groundwater resources in Maira Area, Mardan District, N. W. F. P, Report No. IX-1. Peshawar: WAPDA Hydrogeology Directorate.

  • Borner, F. D., Schopper, J. R., & Weller, A. (1996). Evaluation of transport and storage properties in the soil and groundwater zone from induced polarization measurements. Geophysical Prospecting, 44, 583–601.

    Article  Google Scholar 

  • Bundschuh, J. (1992). Hydrochemical and hydrogeological studies of groundwater in Peshawar Valley, Pakistan. Geological Bulletin, University of Peshawar, 25, 23–37.

    Google Scholar 

  • Burbank, D. W. (1983). The chronology of intermontane basin development in the northwestern Himalaya and the evolution of the northwest syntaxis. Earth and Planetary Science Letters, 64, 77–92.

    Article  Google Scholar 

  • Chandra, S., Ahmad, S., Ram, A., & Dewandel, B. (2008). Estimation of hard rock aquifer hydraulic conductivity from geoelectrical measurements: a theoretical development with field application. Journal of Hydrology, 357, 218–227.

    Article  CAS  Google Scholar 

  • Chapuls, R. P. (1992). Using Cooper–Jacob approximation to take account of pumping well pipe storage effects in early drawdown data of a confined aquifer. Groundwater, 30(3), 331–337.

    Article  Google Scholar 

  • Ellis, D. V., & Singer, M. V. (2007). Well logging for earth scientists. Dordrecht: Springer.

    Book  Google Scholar 

  • Fetter, C. W. (1988). Applied hydrogeology (p. 592). Columbus: Merrill.

    Google Scholar 

  • Fitts, C. R. (2002). Groundwater science. California, USA: Academic Press.

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater (p. 604). New Jersey: Prentice Hall Publications.

    Google Scholar 

  • Government of Pakistan. (1998). Census report, Swabi District, N.W.F.P.

  • Helander, D. P. (1983). Fundamentals of formation evaluation (p. 332). Tulsa: Oil and Gas Consultants International Inc.

    Google Scholar 

  • Hubbard, S., & Rubin, Y. (2002). Hydrogeophysics: state-of-the-discipline. EOS, 83(51), 602–606.

    Article  Google Scholar 

  • Huntley, D. (1986). Relation between permeability and electrical resistivity in granular aquifers. Ground Water, 24(4), 466–474.

    Article  Google Scholar 

  • IPI2WIN-1D computer programme. (2000). Programs set for 1-D VES data interpretation. Moscow: Department of Geophysics, Geological Faculty, Moscow University.

    Google Scholar 

  • Kazmi, A. H., & Jan, M. Q. (1997). Geology and tectonics of Pakistan. Karachi: Graphic. 5C, 6/10.

  • Kelly, W. E. (1977). Geoelectric sounding for estimating hydraulic conductivity. Ground Water, 15(6), 420–425.

    Article  Google Scholar 

  • Kruseman, G. P., and de Ridder, N. A. (1991). Analysis and evaluation of pumping test data. Wageningen: International Institute for Land Reclamation and Improvement, 6700 AA.

  • Kruseman, G. P., & Naqavi, S. A. H. (1988). Hydrogeology and groundwater resources of the North-West Frontier Province Pakistan (p. 110). Peshawar: WAPDA Hydrogeology Directorate.

    Google Scholar 

  • Kunetz, G. (1966). Principles of direct current resistivity prospecting (p. 03). Berlin: Borntraeger.

    Google Scholar 

  • Lima, O. A. L., & Niwas, S. (2000). Estimation of hydraulic parameters of shaly sandstone aquifers from geoelectrical measurements. Journal of hydrology, 235, 12–36.

    Article  Google Scholar 

  • MacDonald, M. A., Burleigh, J., & Burgess, B. G. (1999). Estimating transmissivity from surface resistivity soundings: an example from Thames Gravels. Quarterly Journal of Engineering Geology, 32, 199–205.

    Article  Google Scholar 

  • Martin, N. R., Siddiqui, S. T. A., & King, B. H. (1962). A geological reconnaissance of the region between the Lower Swat and Indus rivers of Pakistan. The Geological Bulletin of the Punjab University, 2, 1–15.

    CAS  Google Scholar 

  • Mazac, O., Cislerova, M., & Vogel, T. (1988). Application of geophysical methods in describing spatial variability of saturated hydraulic conductivity in the zone of aeration. Journal of Hydrology, 79, 1–19.

    Google Scholar 

  • Mondal, N. C., Rao, A. V., & Singh, V. P. (2010). Efficacy of electrical resistivity and induced polarization methods for revealing fluoride contaminated groundwater in granite terrain. Environmental Monitoring and Assessment, 168, 103–114.

    Article  CAS  Google Scholar 

  • Niwas, S., & Singhal, D. C. (1981). Estimation of aquifer transmissivity from Dar Zarrouk parameters in porous media. Journal of Hydrology, 50, 393–399.

    Article  Google Scholar 

  • Niwas, S., & Singhal, D. C. (1985). Aquifer transmissivity of porous media from resistivity data. Journal of Hydrology, 82, 143–153.

    Article  Google Scholar 

  • Niwas, S., Gupta, P. K., & de Lima, O. A. L. (2006). Nonlinear electrical response of saturated shaly sand reservoir and its asymptotic approximations. Geophysics, 71(3), 129–133.

    Article  Google Scholar 

  • Nizami, M. M. I. (1973). Reconnaissance soil survey of Peshawar Vale (revised) (p. 165). Lahore: Soil Survey of Pakistan.

    Google Scholar 

  • Ochuko, A. (2011). Underground water exploration of Oleh, Nigeria using the electrical resistivity method. Scientific Research and Essays, 6(10), 4295–4300.

    Google Scholar 

  • Orellana, E., & Mooney, H. (1966). Master tables and curves for vertical electrical sounding over layered structures. Intercenia, Madrid, Geophysical Prospecting, 4, 249–279.

    Google Scholar 

  • Rafiq, M., & Jan, M. Q. (1989). Geochemistry and petrogenesis of the Ambela Granite Complex, NW Pakistan. Geological Bulletin of the Peshawar University, 22, 159–179.

    Google Scholar 

  • Ratej, J., & Brenčič, M. (2005). Comparative analysis of single well aquifer test methods on the mill tailing site of Boršt Žirovski vrh, Slovenija. RMZ-Materials and Geoenvironment, 52(4), 669–684.

    Google Scholar 

  • Robinson, E., & Coruh, C. (1988). Basic Exploration Geophysics. New York: John Wiley & Sons.

    Google Scholar 

  • Rubin, Y. and Hubbard, S. S. (2005). Hydrogeophysics. Water Science and Technology Library, (50), Springer, 521.

  • Sajjad, M. A. (1988). Hydrogeological reconnaissance survey in Gadoon area. Peshawar: WAPDA Hydrogeology Directorate.

    Google Scholar 

  • Salem, H. S. (1999). Determination of fluid transmissivity and electric transverse resistance for shallow aquifers and deep reservoirs from surface well log electric measurements. Hydrology and Earth Systems Sciences, 3(3), 421–427.

    Article  Google Scholar 

  • Salem, H. S. (2000). Modelling of lithology and hydraulic conductivity of shallow sediments from resistivity measurements using Schlumberger vertical electrical soundings. Energy sources, 23(7), 599–618.

    Article  Google Scholar 

  • Searle, M. P., Khan, M. A., Jan, M. Q., DiPietro, J. A., Pogue, K. R., Pivnik, D. A., Sercombe, W. J., Izatt, C. N., Blisniuk, P. M., Treloar, P. J., Gaetani, M., & Zanchi, A. (1996). Geological map of north Pakistan and adjacent areas of northern Ladakh and Western Tibet. Salt Ranges, Kohistan, Karakoram and Hindi Kush: Western Himalaya.

    Google Scholar 

  • Shahzad, F., Mahmood, S. A., & Gloaguen, R. (2009). Drainage network and lineament analysis: an approach for Potwar Plateau (northern Pakistan). Journal of Mountain Sciences, 6(1), 14–24.

    Article  Google Scholar 

  • Shahzad, F., Mahmood, S. A., & Gloaguen, R. (2010). Nonlinear analysis of drainage systems to examine surface deformation: an example from Potwar Plateau (Northern Pakistan). Nonlinear Processes in Geophysics, 17, 137–147.

    Article  Google Scholar 

  • Shevnin, V., Delgado-Rodriguez, O., Mousatov, A., & Ryjov, A. (2006). Estimation of hydraulic conductivity on clay content in soil determined from resistivity data. Geofisica Internacional, 45(3), 195–207.

    Google Scholar 

  • Singh, K. P. (2005). Nonlinear estimation of aquifer parameters from surficial resistivity measurements. Hydrology and Earth Systems Sciences, 2, 918–938.

    Google Scholar 

  • Son, Y. (2011). Assessment of concentration in contaminated soil by potentially toxic elements using electrical properties. Environmental Monitoring and Assessment, 176, 1–11.

    Article  CAS  Google Scholar 

  • Sorensen, K. I., Auken, E., Christensen, N. B., & Pellerin, L. (2005). An integrated approach for hydrogeophysical investigations: new technologies and a case history. Near Surface Geophysics, (2), Application and Case Histories.

  • Soupios, P., Kouli, M., Vallianatos, F., Vafidis, A., & Stavroulakis, G. (2007). Estimation of aquifer hydraulic parameters from surficial geophysical methods: a case study of keritis basin in Chania (Crete-Greece). Journal of Hydrology, 338, 122–131.

    Article  Google Scholar 

  • Sultan, S. A., Mekhemer, H. M., Santos, F. A. M., & Abd Alla, M. (2009). Geophysical measurements for subsurface mapping and groundwater exploration at the central part of the Sinai Peninsula, Egypt. The Arabian Journal for Science and Engineering, 34(1A), 103–119.

    Google Scholar 

  • Tahirkheli, R. A. K. (1985). The magnetostratigraphy, fission track dating and stratigraphic evolution of the Peshawar intermontane basin, northern Pakistan. Geological Society of America Bulletin, 96, 539–552.

    Article  Google Scholar 

  • Tiab, D., & Donaldson, E. C. (2004). Petrophysics (2nd ed.). Burlington: Gulf Professional.

    Google Scholar 

  • Vinegar, H. J., & Waxman, M. H. (1984). Induced polarization of shaly sands. Geophysics, 49(8), 1267–1287.

    Article  Google Scholar 

  • Waxman, M. H., & Smits, L. J. M. (1968). Electrical conductivities in oil bearing sands. Journal of the society of Petroleum Engineers, 8, 107–122.

    Google Scholar 

  • Worthington, P. F. (1993). The uses and abuses of the Archie equations: 1. The formation factor–porosity relationship. Journal of Applied Geophysics, 30, 215–228.

    Article  Google Scholar 

  • Yadav, G. S. (1995). Relating hydraulic and geoelectric parameters of Jayant aquifer, India. Journal of Hydrology, 167, 23–38.

    Article  Google Scholar 

  • Yadav, G. S., & Abolfazli, H. (1998). Geoelectrical soundings and their relationship to hydraulic parameters in semiarid regions of Jalore, northwestern India. Journal of Applied Geophysics, 39, 35–51.

    Article  Google Scholar 

  • Zananiri, I., Memou, T., & Lachanas, G. (2006). Vertical electrical sounding (VES) survey at the central part of Kos Island, Aegean, Greece. Geosciences, 411-413.

  • Zohdy, A. A. R., Eaton, G. P., & Mabey, D. R. (1974). Applications of surface geophysics to groundwater investigations, Chapter-D1, Techniques of water resources Investigations of the United States, United States Geological Survey, P.O Box, 25425, Denver.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asam Farid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farid, A., Jadoon, K., Akhter, G. et al. Hydrostratigraphy and hydrogeology of the western part of Maira area, Khyber Pakhtunkhwa, Pakistan: a case study by using electrical resistivity. Environ Monit Assess 185, 2407–2422 (2013). https://doi.org/10.1007/s10661-012-2720-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2720-z

Keywords

Navigation