Skip to main content
Log in

Effective Elasticity Tensors in Context of Random Errors

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

We introduce the effective elasticity tensor of a chosen material-symmetry class to represent a measured generally anisotropic elasticity tensor by minimizing the weighted Frobenius distance from the given tensor to its symmetric counterpart, where the weights are determined by the experimental errors. The resulting effective tensor is the highest-likelihood estimate within the specified symmetry class. Given two material-symmetry classes, with one included in the other, the weighted Frobenius distance from the given tensor to the two effective tensors can be used to decide between the two models—one with higher and one with lower symmetry—by means of the likelihood ratio test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bóna, A.: Symmetry characterization and measurement errors of elasticity tensors. Geophysics 74(5), 75–78 (2009)

    Article  Google Scholar 

  2. Bóna, A., Bucataru, I., Slawinski, M.A.: Material symmetries of elasticity tensor. Q. J. Mech. Appl. Math. 54(4), 584–598 (2004)

    Google Scholar 

  3. Bóna, A., Bucataru, I., Slawinski, M.A.: Characterization of elasticity-tensor symmetries using SU(2). J. Elast. 75(3), 267–289 (2004)

    Article  MATH  Google Scholar 

  4. Bóna, A., Bucataru, I., Slawinski, M.A.: Space of SO(3)-orbits of elasticity tensors. Arch. Mech. 60(2), 121–136 (2008)

    Google Scholar 

  5. Bos, L., Slawinski, M.A.: 2-norm effective isotropic Hookean solids. J. Elast. (2014). doi:10.1007/s10659-014-9497-y

    Google Scholar 

  6. Bucataru, I., Slawinski, M.A.: Invariant properties for finding distance in space of elasticity tensors. J. Elast. 94(2), 97–114 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chadwick, P., Vianello, M., Cowin, S.C.: A new proof that the number of linear elastic symmetries is eight. J. Mech. Phys. Solids 49, 2471–2492 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Chapman, C.H.: Fundamentals of Seismic Wave Propagation. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  9. Danek, T., Kochetov, M., Slawinski, M.A.: Uncertainty analysis of effective elasticity tensors using quaternion-based global optimization and Monte-Carlo method. Q. J. Mech. Appl. Math. 66(2), 253–272 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dewangan, P., Grechka, V.: Inversion of multicomponent, multiazimuth, walkaway VSP data for the stiffness tensor. Geophysics 16, 917–922 (2003)

    Google Scholar 

  11. Diner, Ç., Kochetov, M., Slawinski, M.A.: Identifying symmetry classes of elasticity tensors using monoclinic distance function. J. Elast. 102(2), 175–190 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Diner, Ç., Kochetov, M., Slawinski, M.A.: On choosing effective symmetry class for elasticity tensors. Q. J. Mech. Appl. Math. 64(1), 57–74 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Eadie, W.T., Drijard, D., James, F.E., Roos, M., Sadoulet, B.: Statistical Methods in Experimental Physics, pp. 269–271. North-Holland, Amsterdam (1971)

    MATH  Google Scholar 

  14. Forte, S., Vianello, M.: Symmetry classes for elasticity tensors. J. Elast. 68(3), 1022–1031 (1996)

    MathSciNet  Google Scholar 

  15. Gazis, D.C., Tadjbakhsh, I., Toupin, R.A.: The elastic tensor of given symmetry nearest to an anisotropic elastic tensor. Acta Crystallogr. 16, 917–922 (1963)

    Article  MathSciNet  Google Scholar 

  16. Guilleminot, J., Soize, C.: On the statistical dependence for the components of random elasticity tensors exhibiting material symmetry properties. J. Elast. 111, 109–130 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Guilleminot, J., Soize, C.: Stochastic framework for modeling the linear apparent behavior of complex materials: application to random porous materials with interphases. Acta Mech. Sin. 29(6), 773–782 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  18. Kochetov, M., Slawinski, M.A.: On obtaining effective orthotropic elasticity tensors. Q. J. Mech. Appl. Math. 62, 149–166 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kochetov, M., Slawinski, M.A.: On obtaining effective transversely isotropic elasticity tensors. J. Elast. 94(1), 1–13 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Moakher, M., Norris, A.N.: The closest elastic tensor of arbitrary symmetry to an elastic tensor of lower symmetry. J. Elast. 85(3), 215–263 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Norris, A.N.: The isotropic material closest to a given anisotropic material. J. Mech. Mater. Struct. 1(2), 223–238 (2006)

    Article  Google Scholar 

  22. Noshadravan, A., Ghanem, R., Guilleminot, J., Atodaria, I., Peralta, P.: Validation of a probabilistic model for mesoscale elasticity tensor. J. Elast. 3(1), 73–100 (2013)

    MathSciNet  Google Scholar 

  23. Rusmanugroho, H., McMechan, G.: 3D 9C seismic modeling and inversion of Weyburn Field data. Geophysics 77(4), 161–173 (2012)

    Article  ADS  Google Scholar 

  24. Sadov, S.: Personal communication (2014)

  25. Voigt, W.: Lehrbuch der Kristallphysics. Teubner, Leipzig (1910)

    Google Scholar 

  26. Wilks, S.S.: The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Stat. 9(1), 60–62 (1938)

    Article  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge discussions with Johann Guilleminot, Luke Mifflen-Mitchell, Michael Rochester and Sergey Sadov as well as the graphic and editorial support of Elena Patarini and David Dalton, respectively.

This research was performed in the context of The Geomechanics Project supported by Husky Energy. Also, this research was supported partially by the Natural Sciences and Engineering Research Council of Canada, Discovery Grants 341792-2013 and 238416-2013, and by the Polish National Science Center under Grant No. UMO-2013/11/B/ST10/04742.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Slawinski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danek, T., Kochetov, M. & Slawinski, M.A. Effective Elasticity Tensors in Context of Random Errors. J Elast 121, 55–67 (2015). https://doi.org/10.1007/s10659-015-9519-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-015-9519-4

Keywords

Mathematics Subject Classification

Navigation