Skip to main content

Advertisement

Log in

Sensitive and specific detection of Xanthomonas campestris pv. zinniae by PCR using pathovar-specific primers

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

A sensitive and specific assay was developed to detect bacterial leaf and flower spot disease on zinnia caused by Xanthomonas campestris pv. zinniae (Xcz). A draft genome sequence was determined for Xcz strain E4, isolated from zinnia in Jilin province, China. Comparative genomics analyses were utilized to identify a sequence specific to Xcz in the unique gene 0834. This sequence region was amplified as 1044 bp DNA fragment using designed primers 0834F and 0834R. Using this primer set, specific PCR products were only amplified from DNA from Xcz strains and not from other pathovars of X. campestris, other species of Xanthomonas, or from other genera such as Pseudomonas and Bacillus. The limit of PCR detection in pure culture suspension was approximately 1.7 × 103 CFU/ml per reaction. Specific amplification of the fragments for Xcz was sensitive relatively to the technique used, detecting as low as 0.1 pg template DNA. The PCR technique was also applied to detect the Xcz pathogen in naturally infected leaves and seeds of zinnia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alippi, A. M. (1985). Bacterial leaf spot of Zinnia elegans, a new disease in Argentina. Rev Argent Microbiol, 17, 11–13.

    CAS  PubMed  Google Scholar 

  • Araújo, E. R., Costa, J. R., Ferreira, M. A. S. V., & Quezado-Duval, A. M. (2012). Simultaneous detection and identification of the Xanthomonas species complex associated with tomato bacterial spot using species-specific primers and multiplex. J Appl Microbiol, 113, 1479–1490.

    Article  Google Scholar 

  • An, J. H., Noh, Y. H., & Kim, Y. E. (2015). Development of PCR and TaqMan PCR assays to detect Pseudomonas coronafaciens, a causal agent of halo blight of oats. Plant Pathol J, 31, 25–32.

    Article  CAS  Google Scholar 

  • Akhtar, M. A., & Khokhar, L. K. (1988). Bacterial leaf spot of zinnia cultivars caused by Xanthomonas campestris pv. zinniae. Pakistan J. Agric Res, 9, 209–211.

    Google Scholar 

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. J Mol Biol, 215, 403–410.

    Article  CAS  Google Scholar 

  • Bühlmann, A., Pothier, J. F., Tomlinson, J. A., Frey, J. E., Boonham, N., Smits, T. H. M., et al. (2013). Genomics- informed design of loop-mediated isothermal amplification for detection of phytopathogenic Xanthomonas arboricola pv. pruni at the intraspecific level. Plant Pathol, 62, 475–484.

    Article  Google Scholar 

  • Bertus, A. L., & Hayward, A. C. (1971). A bacterial leaf spot of zinnia in New South Wales. Proc Linnean Soc NSW, 96, 81–84.

    Google Scholar 

  • Baek, K. Y., Lee, H. H., Son, G. J., Lee, P. A., Roy, N., Seo, Y. S., & Lee, S. W. (2018). Specific and sensitive primers developed by comparative genomics to detect bacterial pathogens in grains. Plant Pathol J, 34, 104–112.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bahar, O., Efrat, M., Hadar, E., Dutta, B., Walcott, R. R., & Burdman, S. (2008). New subspecies- specific polymerase chain reaction-based assay for the detection of Acidovorax avenae subsp. citrulli. Plant Pathol, 57, 754–763.

    Article  CAS  Google Scholar 

  • Chiaromonte, F., Yap, V. B., & Miller, W. (2001). Scoring pairwise genomic sequence alignments. Pac Symp Biocomput, 7, 115.

    Google Scholar 

  • Deighton, F. C. (1957). Plant pathology section. Review of Applied Mycology, 36, 381.

    Google Scholar 

  • Harris, R. S. (2007). Improved pairwise alignment of genomic DNA. ProQuest.

  • Holcomb, G. E. (1985). First report of bacterial leaf and flower spot of zinnia in Louisana. Plant Dis, 69, 360.

    Article  Google Scholar 

  • Hernándezy, Y., & Trujillo, G. (2000). Xanthomonas campestris pv. zinniae, infecting Zinnia plants (Zinnia elegans Jacq.) in Venezuela. Rev Fac Agron (LUZ), 17, 156–163.

    Google Scholar 

  • Kurtz, S., Phillippy, A., Delcher, A. L., Smoot, M., Shumway, M., Antonescu, C., et al. (2004). Versatile and open software for comparing large genomes. Genome Biol, 5, R12.

    Article  Google Scholar 

  • Li, W., & Godzik, A. (2006). Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 22, 1658–1659.

    Article  CAS  Google Scholar 

  • Li, W., Jaroszewski, L., & Godzik, A. (2001). Clustering of highly homologous sequences to reduce the size of large protein database. Bioinformatics, 17, 282–283.

    Article  CAS  Google Scholar 

  • Li, W., Jaroszewski, L., & Godzik, A. (2002). Tolerating some redundancy significantly speeds up clustering of large protein databases. Bioinformatics, 18, 77–82.

    Article  CAS  Google Scholar 

  • Lang, J. M., Hamilton, J. P., Diaz, M. G. Q., Van Sluys, M. A., Burgos, M. R. G., Vera Cruz, C. M., et al. (2010). Genomics-based diagnostic marker development for Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola. Plant Dis, 94, 311–319.

    Article  CAS  Google Scholar 

  • Larrea-Sarmiento, A., Dhakal, U., Boluk, G., Fatdal, L., Alvarez, A., Strayer-Scherer, A., et al. (2018). Development of a genome-informed loop-mediated isothermal amplification assay for rapid and specific detection of Xanthomonas euvesicatoria. Sci Rep, 8, 14298–14309.

    Article  Google Scholar 

  • Myung, I. S., Lee, J. Y., Yoo, H. L., Wu, J. M., & Shim, H. S. (2012). Bacterial leaf spot of zinnia caused by Xanthomonas campestris pv. zinniae, a new disease in Korea. Plant Dis, 96, 1064.

    Article  Google Scholar 

  • Minoru, T. (1982). Xanthomonas campestris pv. zinniae (Hopkins & Dowson 1949) dye 1978. Ann. Phytopath. Soc. Japan, 48, 532–533.

    Google Scholar 

  • Nanizzi, A. (1929). Una bacteriosi della ‘Zinnia elegans’ Jaqc. (Notapreliminare). Atti Report. Accademia Fisiocritici Siena. Ser. X, 416-417.

  • Peregrine, W. T., & Siddiqi, M. A. (1972). A revised and annotated list of plant disease in Malawi.

  • Pritchard, L., Humphris, S., Saddler, G. S., Parkinson, N. M., Bertrand, V., Elphinstone, J. G., et al. (2013). Detection of phytopathogens of the genus Dickeya using a PCR primer prediction pipeline for draft bacterial genome sequences. Plant Pathol, 62, 587–596.

    Article  CAS  Google Scholar 

  • Robbs, C. F. (1954). Bacterias fitopatogenicas do Brasil. Rio de Journal, 13, 265–282.

    Google Scholar 

  • Rangaswami, G., & Gowda, S. S. (1963). On some bacterial disease of ornamentals and vegetables in Madras state. Indian Phytopathology, 16, 74–85.

    Google Scholar 

  • Strider, D. L. (1979). Detection of Xanthomonas nigromaculans f. sp. zinniae in zinnia seed, Plant Dis. Reptr., 63, 869–873.

    Google Scholar 

  • Sundin, G. W., Wang, N., Charkowski, A. O., Castiblanco, L. F., Jia, H., & Zhao, Y. (2016). Perspectives on the transition from bacterial phytopathogen genomics studies to applications enhancing disease management: From promise to practice. Phytopathology, 106, 1071–1082.

    Article  CAS  Google Scholar 

  • Schwarczinger, I., Vajna, L., & Süle, S. (2008). First report of bacterial leaf and flower spot of Zinnia elegans caused by Xanthomonas campestris pv. zinniae in Hungary. Plant Pathol, 57, 367.

    Article  Google Scholar 

  • Sleesman, J., White, D. G., & Ellett, C. W. (1973). Bacterial leaf spot of zinnia: A new disease in North America. Plant Dis Rep, 57, 555–557.

    Google Scholar 

  • Tian, Q., Feng, J. J., Hu, J., & Zhao, W. J. (2016). Selective detection of viable seed-borne Acidovorax citrulli by real-time PCR with propidium monoazide. Sci Rep, 6, 35457.

    Article  CAS  Google Scholar 

  • Walcott, R. R., & Gitaitis, R. D. (2000). Detection of Acidovorax avenae subsp. citrulli in watermelon seed using immunomagnetic separation and the polymerase chain reaction. Plant Dis, 84, 470–474.

    Article  CAS  Google Scholar 

  • Young, J. M., Park, D. C., Shearman, H. M., & Fargier, E. (2008). A multilocus sequence analysis of the genus Xanthomonas. Syst Appl Microbiol, 31, 366–377.

    Article  CAS  Google Scholar 

  • Zhao, Y. T., Lu, B. H., Bai, Q. R., & Gao, J. (2016). First report of Xanthomonas campestris pv. zinniae causing bacterial leaf and flower spot disease of Zinnia elegans in Jilin Province, China. Plant Dis, 100, 208.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by 111 Project (D17014). We thank Yawen He (College of Life Science and Biotechnology, Shanghai Jiao Tong University), Tingchang Zhao (Institute of Plant Protection, Chinese Academy of Agricultural Sciences), and Xiaoling Deng (College of agriculture, South China Agricultural University) for strains provided by them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Yt., Sundin, G.W., Zhang, Xy. et al. Sensitive and specific detection of Xanthomonas campestris pv. zinniae by PCR using pathovar-specific primers. Eur J Plant Pathol 156, 491–500 (2020). https://doi.org/10.1007/s10658-019-01898-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-019-01898-6

Keywords

Navigation