Skip to main content
Log in

Characterization of fungi (Fusarium and Rhizoctonia) and oomycetes (Phytophthora and Pythium) associated with apple orchards in South Africa

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Several species of fungi and oomycetes including Fusarium, Rhizoctonia, Phytophthora and Pythium have been reported as root pathogens of apple where they contribute to a phenomenon known as apple replant disease. In South Africa, little is known about specific species in these genera and their pathogenicity toward apple. Therefore, these aspects were investigated along with the development and optimization of qPCR tests for detection and quantification of the most virulent oomycete species. In eight investigated orchards, the oomycete Phythophthora cactorum was widely distributed, while nine Pythium species were differentially distributed among the orchards. Pythium irregulare was the most widely distributed and the most virulent species along with P. sylvaticum, P. vexans and Ph. cactorum. Seven binucleate Rhizoctonia anastomosis groups (AGs) were also differentially distributed among the orchards, with the majority appearing to be non-pathogenic while certain AG-I and AG-F isolates exhibited low virulence on apple. In the genus Fusarium, F. oxysporum was widely distributed, but isolates were non-pathogenic. Fusarium solani and F. avenaceum were less frequently encountered, with only some isolates having low virulence. qPCR data obtained from seedling roots inoculated with the most virulent Pythium species (P. irregulare, P. sylvaticum and P. vexans) and the genus Phytophthora were not always reproducible between trials, or isolates of the same species. In general, seedling growth inhibition was associated with the presence of a low amount of pathogen DNA (±40 fg μl−1 to 2 pg μl−1) in roots. Pythium irregulare, although having the lowest DNA concentrations in roots, was the only species for which a significant negative correlation was found between seedling weight and pathogen DNA concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AG:

anastomosis group

qPCR:

quantitative real-time PCR

References

  • Bent, E., Loffredo, A., Yang, J.-I., McKenry, M. V., Becker, J. O., & Borneman, J. (2009). Investigations into peach seedling stunting caused by a replant soil. FEMS Microbiology Ecology, 68, 192–200.

    Article  PubMed  CAS  Google Scholar 

  • Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., et al. (2009). The MIQE Guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 55, 611–622.

    Article  PubMed  CAS  Google Scholar 

  • Carling, D. E., Kuninaga, S., & Brainard, K. A. (2002). Hyphal anastomosis reactions, rDNA-internal transcribed spacer sequences, and virulence levels among subsets of Rhizoctonia solani anastomosis group-2 (AG-2) and AG-BI. Phytopathology, 92, 43–50.

    Article  PubMed  CAS  Google Scholar 

  • Cook, R. J., Sitton, J. W., & Haglund, W. A. (1987). Influence of soil treatments on growth and yield of wheat and implications for control of Pythium root rot. Phytopathology, 77, 1192–1198.

    Article  Google Scholar 

  • Cooke, D. E. L., & Duncan, J. M. (1997). Phylogenetic analysis of Phytophthora species based on the ITS1 and ITS2 sequences of ribosomal DNA. Mycological Research, 101, 667–677.

    Article  CAS  Google Scholar 

  • Cooke, D. E. L., Schena, L., & Cacciola, S. O. (2007). Tools to detect, identify and monitor Phytophthora species in natural exoystems. Journal of Plant Pathology, 89, 13–28.

    CAS  Google Scholar 

  • Dick, M. W. (1990). Key to Pythium (pp. 1–64). Reading: Department of Botany, University of Reading, Reading Press.

    Google Scholar 

  • Dick, M. W. (2001a). The peronosporomycetes. In D. J. McLaughlin, E. G. Mclaughlin, & P. A. Lemke (Eds.), The Mycota VII Part A. Systematics and evolution (pp. 39–72). Germany: Springer.

    Google Scholar 

  • Dick, M. W. (2001b). Straminipilious fungi: systematics of the peronosporomycetes, including accounts of the marine straminipilous protests, the plasmodiophorids, and similar organisms. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Dullahide, S. R., Stirling, G. R., Nikulin, A., & Stirling, A. M. (1994). The role of nematodes, fungi, bacteria, and abiotic factors in the etiology of apple replant problems in the Granite Belt of Queensland. Australian Journal of Experimental Agriculture, 34, 1177–1182.

    Article  Google Scholar 

  • Erwin, D. C., & Ribeiro, O. K. (1996). Phytophthora diseases worldwide. St. Paul: The American Phytopathological Society Press.

    Google Scholar 

  • Fravel, D., Olivain, C., & Alabouvette, C. (2003). Fusarium oxysporum and its biocontrol. New Phytologist, 157, 493–502.

    Article  Google Scholar 

  • Geiser, D. M., Jimenez-Gasco, M. M., Kang, S., Makalowska, I., Veeraraghavan, N., Ward, T. J., et al. (2004). Fusarium-ID v. 1.0: A DNA sequence database for identifying Fusarium. European Journal of Plant Pathology, 110, 473–479.

    Article  CAS  Google Scholar 

  • Glass, G. V., Peckham, P. D., & Sanders, J. R. (1972). Consequences of failure to meet assumptions underlying the fixed effects analyses of variance and covariance. Review of Educational Research, 42, 237–288.

    Google Scholar 

  • Goud, J. C., & Termorshuizen, A. J. (2003). Quality of methods to quantify microsclerotia of Verticillium dahliae in soil. European Journal of Plant Pathology, 109, 523–534.

    Article  Google Scholar 

  • Jeffers, S. N., & Martin, S. B. (1986). Comparison of two media selective for Phytophthora and Pythium species. Plant Disease, 70, 1038–1043.

    Article  Google Scholar 

  • Jeffers, S. N., & Wilcox, W. F. (1990). Phytophthora crown, collar, and root rots. In A. L. Jones & H. S. Aldwinckle (Eds.), Compendium of apple and pear diseases (pp. 43–45). St. Paul: The American Phytopathological Society.

    Google Scholar 

  • Jeffers, S. N., Aldwinckle, H. S., Burr, T. J., & Arneson, P. A. (1982). Phytophthora and Pythium species associated with crown rot in New York apple orchards. Phytopathology, 72, 533–538.

    Article  Google Scholar 

  • John, J. A., & Quenouille, M. H. (1977). Experiments: Design and analysis (pp. 232–248). England: Charles Griffin & Co Ltd.

    Google Scholar 

  • Kannwischer, M. E., & Mitchell, D. J. (1978). The influence of a fungicide on the epidemiology of black shank of tobacco. Phytopathology, 68, 1760–1765.

    Article  CAS  Google Scholar 

  • Lamprecht, S. C. (1986). A new disease of Medicago truncatula caused by Cylindrocladium scoparium. Phytophylactica, 18, 111–114.

    Google Scholar 

  • Lee, S. B., & Taylor, J. W. (1990). Isolation of DNA from fungal mycelia and single spores. In M. A. Inni, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 282–287). San Diego: Academic.

    Google Scholar 

  • Leslie, J. F., & Summerell, B. A. (2006). The Fusarium laboratory manual (p. 388). Oxford, UK: Blackwell Publishing Ltd.

    Book  Google Scholar 

  • Levene, H. (1960). Robust test in the equality of variance. In Iolkin Palo Alto (Ed.), Contributions to probability and statistics (pp. 278–292). California, USA: Stanford University Press.

    Google Scholar 

  • Lévesque, C. A., & De Cock, A. W. A. M. (2004). Molecular phylogeny and taxonomy of the genus Pythium. Mycological Research, 108, 1363–1388.

    Article  PubMed  Google Scholar 

  • Manici, L. M., Ciavatta, C., Kelderer, M., & Erschbaumer, G. (2003). Replant problems in South Tyrol: role of fungal pathogens and microbial population in conventional and organic apple orchards. Plant and Soil, 256, 315–324.

    Article  CAS  Google Scholar 

  • Mantiri, F., Samuels, G. J., Rahe, J. E., & Honda, B. M. (2001). Phylogenetic relationships in Neonectria species having Cylindrocarpon anamorphs inferred from mitochondrial ribosomal DNA sequences. Canadian Journal of Botany, 79, 334–340.

    CAS  Google Scholar 

  • Mazzola, M. (1997). Identification and pathogenicity of Rhizoctonia spp. isolated from apple roots and orchard soils. Phytopathology, 87, 582–587.

    Article  PubMed  CAS  Google Scholar 

  • Mazzola, M. (1998). Elucidation of the microbial complex having a causal role in the development of apple replant disease in Washington. Phytopathology, 88, 930–938.

    Article  PubMed  CAS  Google Scholar 

  • Mazzola, M. (1999). Transformation of soil microbial community structure and Rhizoctonia suppressive potential in response to apple roots. Phytopathology, 89, 920–927.

    Article  PubMed  CAS  Google Scholar 

  • Mazzola, M., Andrews, P. K., Reganold, J. P., & Lévesque, C. A. (2002). Frequency, virulence, and metalaxyl sensitivity of Pythium spp. isolated from apple roots under conventional and organic production systems. Plant Disease, 86, 669–675.

    Article  Google Scholar 

  • McLeod, A., Botha, W. J., Meitz, J. C., Spies, C. F. J., Tewoldemedhin, Y. T., & Mostert, L. (2009). Morphological and phylogenetic analyses of Pythium species in South Africa. Mycological Research, 113, 933–951.

    Article  PubMed  Google Scholar 

  • Miller, P. (1955). V-8 juice agar as a general purpose medium for fungi and bacteria. Phytopathology, 45, 461–462.

    Google Scholar 

  • O’Donnell, K., Kistler, H. C., Cigelnik, E., & Ploetz, R. C. (1998). Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences, 95, 2044–2049.

    Article  Google Scholar 

  • Otto, R. L. (1998). An introduction to statistical methods and data analyses. Belmont: Duxbury Press. 105 pp.

    Google Scholar 

  • Picard, K., Ponchet, M., Blein, J. P., Rey, P., Tirilly, Y., & Benhamou, N. (2000). Oligandrin. A proteinaceous molecule produced by the mycoparasite Pythium oligandrum induces resistance to Phytophthora parasitica infection in tomato plants. Plant Physiology, 124, 379–395.

    Article  PubMed  CAS  Google Scholar 

  • SAS. (1999). SAS/STAT user’s guide. Version 8, vol 2. SAS Campus Drive, North Carolina 27513, USA: SAS Institute Inc.

    Google Scholar 

  • Schena, L., Hughes, K. J. D., & Cooke, D. E. L. (2006). Detection and quantification of Phytophthora ramorum, P. kernoviae, P. citricola and P. quercina in symptomatic leaves by multiplex real-time PCR. Molecular Plant Pathology, 7, 365–379.

    Article  PubMed  CAS  Google Scholar 

  • Schena, L., Nigro, F., Ippolito, A., & Gallitelli, D. (2004). Real-time quantitative PCR: a new technology to detect and study phytopathogenic and antagonistic fungi. European Journal of Plant Pathology, 110, 893–908.

    Article  CAS  Google Scholar 

  • Schena, L., Duncan, J. M., & Cooke, D. E. L. (2008). Development and application of a PCR-based ‘molecular tool box’ for the identification of Phytophthora species damaging forests and natural ecosystems. Plant Pathology, 57, 64–75.

    CAS  Google Scholar 

  • Schroeder, K. L., Okubara, P. A., Tambong, J. T., Lévesque, C. A., & Paulitz, T. C. (2006). Identification and quantification of pathogenic Pythium spp. from soils in eastern Washington using real-time polymerase chain reaction. Phytopathology, 96, 637–647.

    Article  PubMed  CAS  Google Scholar 

  • Sewell, G. W. F. (1981). Effects of Pythium species on the growth of apple and their possible causal role in apple replant disease. Annals of Applied Biology, 97, 31–42.

    Article  Google Scholar 

  • Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52, 591–611.

    Google Scholar 

  • Singleton, L. L., Mihail, J. D., & Rush, C. M. (1992). Methods for research on soilborne phytopathogenic fungi. St. Paul, MN, USA: American Phytopathological Society Press.

    Google Scholar 

  • Sneh, B., Zeidan, M., Ichielevich-Auster, M., Barash, I., & Koltin, Y. (1986). Increased growth responses induced by a nonpathogenic Rhizoctonia solani. Canadian Journal of Botany, 64, 2372–2378.

    Article  Google Scholar 

  • Sneh, B., Burpee, L., & Ogoshi, A. (1991). Identification of Rhizoctonia species. St. Paul: American Phytopathological Society Press.

    Google Scholar 

  • Spies, C. F. J. (2010). Characterisation and detection of Pythium and Phytophthora species associated with grapevines in South Africa. PhD thesis, University of Stellenbosch, South Africa.

  • Strauss, J., & Labuschagne, N. (1995). Pathogenicity of Fusarium solani isolates on citrus roots and evaluation of different inoculum types. Toegepaste Plantwetenskap, 9, 48–52.

    Google Scholar 

  • Sutton, D. A., Fothergill, A. W., & Rinaldi, M. G. (Eds.). (1998). Guide to clinically significant fungi (1st ed.). Baltimore: Williams & Wilkins.

    Google Scholar 

  • Tewoldemedhin, Y. T., Mazzola, M., Mostert, L., & McLeod, A. (2010). Cylindrocarpon species associated with apple tree roots in South Africa and their quantification using real-time PCR. European Journal of Plant Pathology. doi:10.1007/s10658-010-9728-4.

    Google Scholar 

  • Van Schoor, L., Denman, S., & Cook, N. C. (2009). Characterisation of apple replant disease under South African conditions and potential biological management strategies. Scientia Horticulturae, 119, 153–162.

    Article  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols, a guide to methods and applications (pp. 315–322). San Diego: Academic.

    Google Scholar 

  • Yamamoto, D. T., & Uchida, J. Y. (1982). Rapid nuclear staining of Rhizoctonia solani and related fungi with Acridine orange and with Safranin O. Mycologia, 74, 145–149.

    Article  Google Scholar 

  • Zondo, P. T., Denman, S., & Labuschagne, I. F. (2007). Effect of season and aggressiveness of isolates on the response of two apple rootstocks to Phytophthora cactorum infection. Australasian Plant Pathology, 36, 240–244.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adéle McLeod.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tewoldemedhin, Y.T., Mazzola, M., Botha, W.J. et al. Characterization of fungi (Fusarium and Rhizoctonia) and oomycetes (Phytophthora and Pythium) associated with apple orchards in South Africa. Eur J Plant Pathol 130, 215–229 (2011). https://doi.org/10.1007/s10658-011-9747-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-011-9747-9

Keywords

Navigation