Skip to main content

Advertisement

Log in

Features of the polycyclic aromatic hydrocarbon’s spatial distribution in the soils of the Don River delta

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

PAHs are one of the most toxic organic compounds classes which is obligatory controlled all over the world. There is a luck of studies devoted to the PAHs levels and sources identification in the south of Russia. The features of the PAHs accumulation and spatial distribution in hydromorphic soils (Fluvisol) were studied on the example of the soils of the Don River delta floodplain landscapes. It has been shown that changes in the PAHs content in soils depended on the type and intensity of the emission source. A factor analysis and multivariate linear regression analysis were carried out to determine the features of the spatial distribution for individual PAH compounds, considering the properties of soils and typical differences in the emission source. The most polluted areas in the studied area located along the transit line of the long-distance tankers, where the content of the most toxic high molecular PAHs compounds reached 8862 ng g−1. As a result of regression analysis, a relationship was established between the PAHs accumulation rate with the content of silt (particles less than 0.001 mm in size) and Ca2+ and Mg2+ exchangeable cations in the soil (at p-level < 0.0001). Differences in individual PAH content for medium and heavy loamy Fluvisol and depend on the influence of different types of pollution sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  • Abdel-Shafy, H. I., & Mansour, M. S. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1), 107–123. https://doi.org/10.1016/j.ejpe.2015.03.011

    Article  Google Scholar 

  • Aichner, B., Bussian, B. M., Lehnik-Habrink, P., & Hein, S. (2015). Regionalized concentrations and fingerprints of polycyclic aromatic hydrocarbons (PAHs) in German forest soils. Environmental Pollution, 203, 31–39. https://doi.org/10.1016/j.envpol.2015.03.026

    Article  CAS  Google Scholar 

  • ATSDR. (1995). Toxicological profile for polycyclic aromatic hydrocarbons/Agency for Toxic Substances and Disease Registry (ATSDR) (p. 487). U.S. Department of Health and Human Services.

    Google Scholar 

  • Bayat, J., Hashemi, S. H., Khoshbakht, K., Deihimfard, R., Shahbazi, A., & Momeni-Vesalian, R. (2015). Monitoring of polycyclic aromatic hydrocarbons on agricultural lands surrounding Tehran oil refinery. Environmental Monitoring and Assessment, 187(7), 1–15. https://doi.org/10.1007/s10661-015-4646-8

    Article  CAS  Google Scholar 

  • Beznosikov, V. A., & Gabov, D. N. (2017). Pah contamination of taiga ecosystems in the Republic of Komi. Lesovedenie, 3, 212–220.

    Google Scholar 

  • Cai, T., Ding, Y., Zhang, Z., Wang, X., Wang, T., Ren, Y., & Dong, Y. (2019). Effects of total organic carbon content and leaching water volume on migration behavior of polycyclic aromatic hydrocarbons in soils by column leaching tests. Environmental Pollution, 254, 112981. https://doi.org/10.1016/j.envpol.2019.112981

    Article  CAS  Google Scholar 

  • Cao, Z., Shen, M., Chen, Q., Liu, J., Yan, G., Wang, M., & Zhao, X. (2018). Multimedia and spatial distribution, internal accumulation and source diagnostics of polycyclic aromatic hydrocarbons (PAHs) of the Luan River Basin, China. Polycyclic Aromatic Compounds, 38(1), 1–12. https://doi.org/10.1080/10406638.2016.1138972

    Article  CAS  Google Scholar 

  • Christl, I., Ruiz, M., Schmidt, J. R., & Pedersen, J. A. (2016). Clarithromycin and tetracycline binding to soil humic acid in the absence and presence of calcium. Environmental Science & Technology, 50(18), 9933–9942. https://doi.org/10.1021/acs.est.5b04693

    Article  CAS  Google Scholar 

  • Deelaman, W., Pongpiachan, S., Tipmanee, D., Suttinun, O., Choochuay, C., Iadtem, N., Charoenkalunyuta, T., & Promdee, K. (2020). Source apportionment of polycyclic aromatic hydrocarbons in the terrestrial soils of King George Island, Antarctica. Journal of South American Earth Sciences, 104, 102832. https://doi.org/10.1016/j.jsames.2020.102832

    Article  CAS  Google Scholar 

  • Dolgopolova, E. N., & Isupova, M. V. (2010). Classification of estuaries by hydrodynamic processes. Water Resources, 37(3), 268–284.

    Article  CAS  Google Scholar 

  • Ekanem, A., Ikpe, E., & Ekwere, I. (2019). Assessment of polycyclic aromatic hydrocarbons levels in soil around automobile repair workshops within Eket metropolis, Akwa Ibom state, Nigeria. International Journal of Research and Scientific Innovation, 6(1), 102–107.

    Google Scholar 

  • Gennadiev, A. N., & Pikovskii, Y. I. (2007). The maps of soil tolerance toward pollution with oil products and polycyclic aromatic hydrocarbons: Methodological aspects. Eurasian Soil Science, 40(1), 70–81. https://doi.org/10.1134/S1064229307010115

    Article  Google Scholar 

  • Gorovtsov, A., Demin, K., Sushkova, S., Minkina, T., Grigoryeva, T., Dudnikova, T., Barbashev, A., Semenkov, I., Romanova, V., Laikov, A., & Rajput, V. (2021). The effect of combined pollution by PAHs and heavy metals on the topsoil microbial communities of Spolic Technosols of the lake Atamanskoe. Southern Russia. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-021-01059-x

    Article  Google Scholar 

  • GOST 17.4.4.02-84. (2008). Protection of Nature. Methods of sampling and preparation of samples for chemical, bacteriological, helminthological analysis. Introduction. 1986-01-01. Moscow: Publishing House "Standartinform" (in Russian).

  • Hassan, H. M., Castillo, A. B., Yigiterhan, O., Elobaid, E. A., Al-Obaidly, A., Al-Ansari, E., & Obbard, J. P. (2018). Baseline concentrations and distributions of Polycyclic Aromatic Hydrocarbons in surface sediments from the Qatar marine environment. Marine Pollution Bulletin, 126, 58–62. https://doi.org/10.1016/j.marpolbul.2017.10.093

    Article  CAS  Google Scholar 

  • ISO 13877-2005. (2005). Soil quality-determination of polynuclear aromatic hydrocarbons-method using high-performance liquid chromatography.

  • Junk, W. J. (2013). The central Amazon floodplain: Ecology of a pulsing system (Vol. 126). Springer.

    Google Scholar 

  • Konstantinova, E., Minkina, T., Sushkova, S., Antonenko, E., & Konstantinov, A. (2020). Levels, sources, and toxicity assessment of polycyclic aromatic hydrocarbons in urban topsoils of an intensively developing Western Siberian city. Environmental Geochemistry and Health, 42(1), 325–341. https://doi.org/10.1007/s10653-019-00357-9

    Article  CAS  Google Scholar 

  • Konstantinova, E., Burachevskaya, M., Mandzhieva, S., Bauer, T., Minkina, T., Chaplygin, V., Zamulina, I., Konstantinov, A., & Sushkova, S. (2022). Geochemical transformation of soil cover and vegetation in a drained floodplain lake affected by long-term discharge of effluents from rayon industry plants lower Don River Basin Southern Russia. Environmental Geochemistry and Health, 44(2), 349–368. https://doi.org/10.1007/s10653-020-00683-3

    Article  CAS  Google Scholar 

  • Koudryashova, Y., Chizhova, T., Tishchenko, P., & Hayakawa, K. (2019). Seasonal variability of polycyclic aromatic hydrocarbons (PAHs) in a Coastal Marine Area in the Northwestern Region of the Sea of Japan/East Sea (Possiet Bay). Ocean Science Journal, 54(4), 635–655. https://doi.org/10.1007/s12601-019-0031-9

    Article  CAS  Google Scholar 

  • Krauss, M., Wilcke, W., Martius, C., Bandeira, A. G., Garcia, M. V., & Amelung, W. (2005). Atmospheric versus biological sources of polycyclic aromatic hydrocarbons (PAHs) in a tropical rain forest environment. Environmental Pollution, 135(1), 143–154. https://doi.org/10.1016/j.envpol.2004.09.012

    Article  CAS  Google Scholar 

  • Lan, J. C., Sun, Y. C., Shi, Y., Xu, X., Yuan, D. X., & Hu, N. (2014). Source and contamination of polycyclic aromatic hydrocarbons in surface soil in karst underground river basin. Huan Jing Ke Xue = Huanjing Kexue, 35(8), 2937.

    Google Scholar 

  • Lawal, A. T. (2017). Polycyclic aromatic hydrocarbons: A review. Cogent Environmental Science, 3(1), 1339841. https://doi.org/10.1080/23311843.2017.1339841

    Article  CAS  Google Scholar 

  • Li, J., Shang, X., Zhao, Z., Tanguay, R. L., Dong, Q., & Huang, C. (2010). Polycyclic aromatic hydrocarbons in water, sediment, soil, and plants of the Aojiang River waterway in Wenzhou, China. Journal of Hazardous Materials, 173(1–3), 75–81. https://doi.org/10.1016/j.jhazmat.2009.08.050

    Article  CAS  Google Scholar 

  • Li, X., Zheng, R., Bu, Q., Cai, Q., Liu, Y., Lu, Q., & Cui, J. (2019). Comparison of PAH content, potential risk in vegetation, and bare soil near Daqing oil well and evaluating the effects of soil properties on PAHs. Environmental Science and Pollution Research, 26(24), 25071–25083. https://doi.org/10.1007/s11356-019-05720-y

    Article  CAS  Google Scholar 

  • Łyszczarz, S., Lasota, J., Szuszkiewicz, M. M., & Błońska, E. (2021). Soil texture as a key driver of polycyclic aromatic hydrocarbons (PAHs) distribution in forest topsoils. Scientific Reports, 11(1), 1–11. https://doi.org/10.1038/s41598-021-94299-x

    Article  CAS  Google Scholar 

  • Mayer, S., Kölbl, A., Völkel, J., & Kögel-Knabner, I. (2019). Organic matter in temperate cultivated floodplain soils: Light fractions highly contribute to subsoil organic carbon. Geoderma, 337, 679–690. https://doi.org/10.1016/j.geoderma.2018.10.014

    Article  CAS  Google Scholar 

  • Minkina, T., Fedorenko, G., Nevidomskaya, D., Konstantinova, E., Pol’shina, T., Fedorenko, A., Chaplygin, V., Mandzhieva, S., Dudnikova, T., & Hassan, T. (2021a). The morphological and functional organization of cattails Typha laxmannii Lepech. and Typha australis Schum. and Thonn. under soil pollution by potentially toxic elements. Water, 13(2), 227. https://doi.org/10.3390/w13020227

    Article  CAS  Google Scholar 

  • Minkina, T. M., Fedorenko, G. M., Nevidomskaya, D. G., Pol’shina, T. N., Fedorenko, A. G., Chaplygin, V. A., Mandzhieva, S. S., Sushkova, S. N., & Hassan, T. M. (2021b). Bioindication of soil pollution in the delta of the Don River and the coast of the Taganrog Bay with heavy metals based on anatomical, morphological and biogeochemical studies of macrophyte (Typha australis Schum. & Thonn). Environmental Geochemistry and Health, 43(4), 1563–1581. https://doi.org/10.1007/s10653-019-00379-3

    Article  CAS  Google Scholar 

  • Minkina, T. M., Fedorov, Y. A., Nevidomskaya, D. G., Mandzhieva, S. S., & Kozlova, M. N. (2016). Specific features of content and mobility of heavy metals in soils of floodplain of the Don River. Arid Ecosystems, 6(1), 70–79. https://doi.org/10.1134/S2079096115040095

    Article  Google Scholar 

  • Motelay-Massei, A., Ollivon, D., Garban, B., Teil, M. J., Blanchard, M., & Chevreuil, M. (2004). Distribution and spatial trends of PAHs and PCBs in soils in the Seine River basin, France. Chemosphere, 55(4), 555–565. https://doi.org/10.1016/j.chemosphere.2003.11.054

    Article  CAS  Google Scholar 

  • Nguyen, X. P., Cui, Y. J., Tang, A. M., Deng, Y. F., Li, X. L., & Wouters, L. (2013). Effects of pore water chemical composition on the hydro-mechanical behavior of natural stiff clays. Engineering Geology, 166, 52–64. https://doi.org/10.1016/j.enggeo.2013.08.009

    Article  Google Scholar 

  • Piccolo, A., Spaccini, R., Drosos, M., Vinci, G., & Cozzolino, V. (2018). The molecular composition of humus carbon: recalcitrance and reactivity in soils. In The future of soil carbon (pp. 87–124). Academic Press. https://doi.org/10.1016/B978-0-12-811687-6.00004-3

  • Pikovskii, Y. I., Smirnova, M. A., Gennadiev, A. N., Zavgorodnyaya, Y. A., Zhidkin, A. P., Kovach, R. G., & Koshovskii, T. S. (2019). Parameters of the native hydrocarbon status of soils in different bioclimatic zones. Eurasian Soil Science, 52(11), 1333–1346. https://doi.org/10.1134/S1064229319110085

    Article  CAS  Google Scholar 

  • Ren, X., Zeng, G., Tang, L., Wang, J., Wan, J., Liu, Y., Yu, J., Yi, H., Ye, S., & Deng, R. (2018). Sorption, transport and biodegradation: An insight into bioavailability of persistent organic pollutants in soil. Science of the Total Environment, 610, 1154–1163. https://doi.org/10.1016/j.scitotenv.2017.08.089

    Article  CAS  Google Scholar 

  • Saeedi, M., Li, L. Y., & Grace, J. R. (2018). Effect of organic matter and selected heavy metals on sorption of acenaphthene, fluorene and fluoranthene onto various clays and clay minerals. Environmental Earth Sciences, 77(8), 305. https://doi.org/10.1007/s12665-018-7489-0

    Article  CAS  Google Scholar 

  • Sazykin, I. S., Minkina, T. M., Khmelevtsova, L. E., Antonenko, E. M., Azhogina, T. N., Dudnikova, T. S., Sushkova, S. N., Klimova, M. V., Karchava, Sh. K., Seliverstova, EYu., Kudeevskaya, E. M., Konstantinova, EYu., Khammami, M. I., Gnennaya, N. V., Al-Rammahi, A. A. K., Rakin, A. V., & Sazykina, M. A. (2021). Polycyclic aromatic hydrocarbons, antibiotic resistance genes, toxicity in the exposed to anthropogenic pressure soils of the Southern Russia. Environmental Research, 194, 110715. https://doi.org/10.1016/j.envres.2021.110715

    Article  CAS  Google Scholar 

  • Sun, Y., Xie, Z., Wu, K., Lan, J., Li, T., & Yuan, D. (2020). Speciation, distribution and migration pathways of polycyclic aromatic hydrocarbons in a typical underground river system in Southwest China. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2020.125690

    Article  Google Scholar 

  • Sündermann, A., Solc, R., Tunega, D., Haberhauer, G., Gerzabek, M. H., & Oostenbrink, C. (2015). Vienna soil-organic-matter modeler—Generating condensed-phase models of humic substances. Journal of Molecular Graphics and Modelling, 62, 253–261. https://doi.org/10.1016/j.jmgm.2015.10.007

    Article  CAS  Google Scholar 

  • Sushkova, S., Minkina, T., Deryabkina, I., Rajput, V., Antonenko, E., Nazarenko, O., Yadav, B. K., Hakki, E., & Mohan, D. (2019). Environmental pollution of soil with PAHs in energy producing plants zone. Science of the Total Environment, 655, 232–241. https://doi.org/10.1016/j.scitotenv.2018.11.080

    Article  CAS  Google Scholar 

  • Sushkova, S., Mİnkİna, T., Tarİgholİzadeh, S., Antonenko, E., Konstantİnova, E., Gülser, C., Dudnİkova, T., Barbashev, A., & Kizilkaya, R. (2020). PAHs accumulation in soil-plant system of Phragmites australis Cav. in soil under long-term chemical contamination. Eurasian Journal of Soil Science (EJSS), 9(3), 242–253. https://doi.org/10.18393/ejss.734607

    Article  CAS  Google Scholar 

  • Sushkova, S., Minkina, T., Tarigholizadeh, S., Rajput, V., Fedorenko, A., Antonenko, E., Dudnikova, T., Chernikova, N., Yadav, B. K., & Batukaev, A. (2021). Soil PAHs contamination effect on the cellular and subcellular organelle changes of Phragmites australis Cav. Environmental Geochemistry and Health, 43(6), 2407–2421. https://doi.org/10.1007/s10653-020-00735-8

    Article  CAS  Google Scholar 

  • Sushkova, S., Minkina, T., Turina, I., Mandzhieva, S., Bauer, T., Kizilkaya, R., & Zamulina, I. (2017). Monitoring of benzo[a]pyrene content in soils under the effect of long-term technogenic pollution. Journal of Geochemical Exploration, 174, 100–106. https://doi.org/10.1016/j.gexplo.2016.02.009

    Article  CAS  Google Scholar 

  • Thiele, S., & Brümmer, G. W. (2002). Bioformation of polycyclic aromatic hydrocarbons in soil under oxygen deficient conditions. Soil Biology and Biochemistry, 34(5), 733–735. https://doi.org/10.1016/S0038-0717(01)00204-8

    Article  CAS  Google Scholar 

  • Tsibart, A. S., & Gennadiev, A. N. (2013). Polycyclic aromatic hydrocarbons in soils: Sources, behavior, and indication significance (a review). Eurasian Soil Science, 46(7), 728–741. https://doi.org/10.1134/S1064229313070090

    Article  CAS  Google Scholar 

  • US EPA (US Environmental Protection Agency) (2020). Integrated Risk Information System (IRIS). Washington, DC: Office of Research and Development. Retrieved March 20, 2020, from https://cfpub.epa.gov/ncea/iris_drafts/AtoZ.cfm

  • Vasil’chuk, Y. K., Belik, A. D., Budantseva, N. A., Gennadiev, A. N., & Vasil’chuk, J. Y. (2020). Carbon Isotope signatures and polyarenes in the pedogenic material of ice wedges of the Batagay Yedoma (Yakutia). Eurasian Soil Science, 53(2), 187–196. https://doi.org/10.1134/S1064229320020143

    Article  Google Scholar 

  • Wakeham, S. G., & Canuel, E. A. (2016). Biogenic polycyclic aromatic hydrocarbons in sediments of the San Joaquin River in California (USA), and current paradigms on their formation. Environmental Science and Pollution Research, 23(11), 10426–10442. https://doi.org/10.1007/s11356-015-5402-x

    Article  CAS  Google Scholar 

  • Wei, R., Ni, J., Chen, W., & Yang, Y. (2017). Variation in soil aggregate–size distribution affects the dissipation of polycyclic aromatic hydrocarbons in long-term field-contaminated soils. Environmental Science and Pollution Research, 24(28), 22332–22339. https://doi.org/10.1007/s11356-017-9919-z

    Article  CAS  Google Scholar 

  • Wohl, E. (2020). Rivers in the landscape. Wiley.

    Book  Google Scholar 

  • Xiao, R., Bai, J., Wang, J., Lu, Q., Zhao, Q., Cui, B., & Liu, X. (2014). Polycyclic aromatic hydrocarbons (PAHs) in wetland soils under different land uses in a coastal estuary: Toxic levels, sources and relationships with soil organic matter and water-stable aggregates. Chemosphere, 110, 8–16. https://doi.org/10.1016/j.chemosphere.2014.03.001

    Article  CAS  Google Scholar 

  • Yunker, M. B., Macdonald, R. W., Ross, P. S., Johannessen, S. C., & Dangerfield, N. (2015). Alkane and PAH provenance and potential bioavailability in coastal marine sediments subject to a gradient of anthropogenic sources in British Columbia, Canada. Organic Geochemistry, 89, 80–116. https://doi.org/10.1016/j.orggeochem.2015.10.002

    Article  CAS  Google Scholar 

  • Zhang, Y., Zhu, S., Xiao, R., Wang, J., & Li, F. (2008). Vertical transport of polycyclic aromatic hydrocarbons in different particle-size fractions of sandy soils. Environmental Geology, 53(6), 1165–1172. https://doi.org/10.1007/s00254-007-0706-x

    Article  CAS  Google Scholar 

  • Zhang, Z. L., Hong, H. S., Zhou, J. L., & Yu, G. (2004). Phase association of polycyclic aromatic hydrocarbons in the Minjiang River Estuary, China. Science of the Total Environment, 323(1–3), 71–86. https://doi.org/10.1016/j.scitotenv.2003.09.026

    Article  CAS  Google Scholar 

  • Zhukova, S. V. (2020). Availability of water resources for the fisheries of the Lower Don River.

Download references

Acknowledgements

The research was financially supported by a grant from the Russian Science Foundation 20-14-00317.

Author information

Authors and Affiliations

Authors

Contributions

DT was involved in conceptualization, visualization, writing—original draft. MT helped in supervision, writing—review and editing, project administration. SS contributed to supervision, writing—review and editing. BA was involved in visualization, investigation. AE helped in investigation. BG contributed to formal analysis, investigation. SE was involved in formal analysis, investigation. MS helped in data curation, formal analysis.

Corresponding author

Correspondence to Svetlana Sushkova.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in this work.

Ethics approval

It is not applicable since the manuscript has not been involved in the use of any animal or human data or tissue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudnikova, T., Minkina, T., Sushkova, S. et al. Features of the polycyclic aromatic hydrocarbon’s spatial distribution in the soils of the Don River delta. Environ Geochem Health 45, 9267–9280 (2023). https://doi.org/10.1007/s10653-022-01281-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01281-1

Keywords

Navigation