Skip to main content
Log in

Fluorine in 20 vegetable species and 25 lettuce cultivars grown on a contaminated field adjacent to a brick kiln

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Crops grown in areas contaminated by industrial and agricultural fluorine (F) have gained increasing attention, however F levels in different vegetables and lettuce cultivars are rarely reported. In situ-field experiment was designed to investigate the concentration, translocation, and health risks of F in 20 vegetable species and 25 lettuce cultivars. After the growth of 150 d for vegetables and 60 d for lettuce, F concentration (12.83–138.07 mg kg−1), translocation factor (0.16–6.32), and bio-concentration factor (1.90–13.73) varied significantly between vegetable species and lettuce cultivars. According to the hazard quotient values (based on the reference dose of F), all the vegetable species appears to pose no risk to human health, while 60% of the lettuce cultivars present potential health risks to children. Therefore, the limit value of F in vegetables for adults and children should be enacted in the future. Moreover, cabbage, green radish, spinach, leaf mustard, and Frisee lettuce (Huayu) were considered as a safe dietary product. These findings contributed to the safe cultivation of vegetables and the control of fluorosis in the areas contaminated by industrial and agricultural activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors are stating that all data included in the manuscript will be available and transparent for interested users.

References

  • Ahmad, M. N., van den Berg, L. J., Shah, H. U., Masood, T., Buker, P., Emberson, L., & Ashmore, M. (2012). Hydrogen fluoride damage to vegetation from peri-urban brick kilns in Asia: A growing but unrecognised problem? Environmental Pollution, 162, 319–324.

    Article  CAS  Google Scholar 

  • Alvarez-Ayuso, E., Gimenez, A., & Ballesteros, J. C. (2011). Fluoride accumulation by plants grown in acid soils amended with flue gas desulphurisation gypsum. Journal of Hazardous Materials, 192, 1659–1666.

    Article  CAS  Google Scholar 

  • Arnesen, A. K. M. (1997). Availability of fluoride to plants grown in contaminated soils. Plant and Soil, 191, 13–25.

    Article  CAS  Google Scholar 

  • Bao, S. (2008). Soil agricultural chemistry analysis method (3rd ed.). China Agriculture Press.

    Google Scholar 

  • Barbier, O., Arreola-Mendoza, L., & Del Razo, L. M. (2010). Molecular mechanisms of fluoride toxicity. Chemico-Biological Interactions, 188, 319–333.

    Article  CAS  Google Scholar 

  • Boukhris, A., Laffont-Schwob, I., Mezghani, I., Kadri, L. E., Prudent, P., Pricop, A., Tatoni, T., & Chaieb, M. (2015). Screening biological traits and fluoride contents of native vegetations in arid environments to select efficiently fluoride-tolerant native plant species for in-situ phytoremediation. Chemosphere, 119, 217–223.

    Article  CAS  Google Scholar 

  • Brougham, K. M., Roberts, S. R., Davison, A. W., & Port, G. R. (2013). The impact of aluminium smelter shut-down on the concentration of fluoride in vegetation and soils. Environmental Pollution, 178, 89–96.

    Article  CAS  Google Scholar 

  • Cai, H., Peng, C., Chen, J., Hou, R., Gao, H., & Wan, X. (2014). X-ray photoelectron spectroscopy surface analysis of fluoride stress in tea (Camellia sinensis (L.) O. Kuntze) leaves. Journal of Fluorine Chemistry, 158, 11–15.

    Article  CAS  Google Scholar 

  • Chen, Y., Wang, S., Nan, Z., Ma, J., Zang, F., Li, Y., & Zhang, Q. (2017). Effect of fluoride and cadmium stress on the uptake and translocation of fluoride and cadmium and other mineral nutrition elements in radish in single element or co-taminated sierozem. Environmental and Experimental Botany, 134, 54–61.

    Article  CAS  Google Scholar 

  • Chinese Nutrition Society. (2016). Chinese dietary reference intakes (DRIs). Science Press. (in Chinese).

    Google Scholar 

  • Divan Junior, A. M., Oliva, M. A., & Ferreira, F. A. (2008). Dispersal pattern of airborne emissions from an aluminium smelter in Ouro Preto, Brazil, as expressed by foliar fluoride accumulation in eight plant species. Ecological Indicators, 8, 454–461.

    Article  Google Scholar 

  • Edmunds, W. M., & Smedley, P. L. (2013). Fluoride in natural waters. In O. Selinus (Ed.), Essentials of medical geology (Revised, pp. 311–336). Springer.

    Chapter  Google Scholar 

  • Franzaring, J., Hrenn, H., Schumm, C., Klumpp, A., & Fangmeier, A. (2006). Environmental monitoring of fluoride emissions using precipitation, dust, plant and soil samples. Environmental Pollution, 144, 158–165.

    Article  CAS  Google Scholar 

  • Fuge, R. (2019). Fluorine in the environment, a review of its sources and geochemistry. Applied Geochemistry, 100, 393–406.

    Article  CAS  Google Scholar 

  • Gadi, B. R., Kumar, R., Goswami, B., Rankawat, R., & Rao, S. R. (2020). Recent Developments in understanding fluoride accumulation, toxicity, and tolerance mechanisms in plants: An overview. Journal of Soil Science and Plant Nutrition, 21, 209–228.

    Article  Google Scholar 

  • Gan, C., Jia, Y., & Yang, J. (2021). Remediation of fluoride contaminated soil with nano-hydroxyapatite amendment: Response of soil fluoride bioavailability and microbial communities. Journal of Hazardous Materials, 405, 124694.

    Article  CAS  Google Scholar 

  • Gao, M., Chang, X., Yang, Y., & Song, Z. (2020). Foliar graphene oxide treatment increases photosynthetic capacity and reduces oxidative stress in cadmium-stressed lettuce. Plant Physiology and Biochemistry, 154, 287–294.

    Article  CAS  Google Scholar 

  • Gupta, S., & Banerjee, S. (2011). Fluoride accumulation in crops and vegetables and dietary intake in a fluoride-endemic area of West Bengal. Fluoride, 44, 153–157.

    CAS  Google Scholar 

  • Gurajala, H. K., Cao, X., Tang, L., Ramesh, T. M., Min, L., & Yang, X. (2019). Comparative assessment of Indian mustard (Brassica juncea L.) genotypes for phytoremediation of Cd and Pb contaminated soils. Environmental Pollution, 254, 113085. https://doi.org/10.1016/j.envpol.2019.113085

    Article  CAS  Google Scholar 

  • He, L. L., Tu, C. L., He, S. Y., Long, J. L., Sun, Y., Sun, Y., & Lin, C. H. (2021). Fluorine enrichment of vegetables and soil around an abandoned aluminium plant and its risk to human health. Environmental Geochemistry and Health, 43, 1137–1154.

    Article  CAS  Google Scholar 

  • Horner, J. M., & Bell, J. N. B. (1995). Evolution of fluoride tolerance in Plantago lanceolata. Science of the Total Environment, 159, 163–168.

    Article  CAS  Google Scholar 

  • Hu, N., Fang, F., Du, Y., & Chen, Y. (2019). Subcellular distribution and chemical forms of fluoride in tea tree leaves (Camellia Sinensis L.) and its cell walls. Fluoride, 523, 385–396.

    Google Scholar 

  • Huang, X., Wang, P., Liu, S., Du, Y., Ni, D., Song, X., & Chen, Y. (2020). An RNA-Seq transcriptome analysis revealing novel insights into fluorine absorption and transportation in the tea plant. Botany, 98, 249–259.

    Article  CAS  Google Scholar 

  • Jha, S. K., Nayak, A. K., Sharma, Y. K., Mishra, V. K., & Sharma, D. K. (2008). Fluoride accumulation in soil and vegetation in the vicinity of brick fields. Bulletin of Environmental Contamination and Toxicology, 80, 369–373.

    Article  CAS  Google Scholar 

  • Kabir, H., Gupta, A. K., & Tripathy, S. (2019). Fluoride and human health: Systematic appraisal of sources, exposures, metabolism, and toxicity. Critical Reviews in Environmental Science and Technology, 50, 1116–1193.

    Article  Google Scholar 

  • Khalid, S., & Mansab, S. (2015). Effect of fluorides on air, water, soil and vegetation in peripheral areas of brick kiln of Rawalpindi. Pakistan Journal of Botany, 47, 205–209.

    CAS  Google Scholar 

  • Klumpp, A., Domingos, M., & Klumpp, G. (1996). Assessment of the vegetation risk by fluoride emissions from fertiliser industries at Cubatão, Brazil. Science of the Total Environment, 192, 219–228.

    Article  CAS  Google Scholar 

  • Lacson, C. F. Z., Lu, M. C., & Huang, Y. H. (2020). Fluoride network and circular economy as potential model for sustainable development: A review. Chemosphere, 239, 124662.

    Article  CAS  Google Scholar 

  • Loganathan, P., Hedley, M. J., Grace, N. D., Lee, J., Cronin, S. J., Bolan, N. S., & Zanders, J. M. (2003). Fertiliser contaminants in New Zealand grazed pasture with special reference to cadmium and fluorine: A review. Australian Journal of Soil Research, 41, 501–532.

    Article  CAS  Google Scholar 

  • Lu, J. (2003). Plant nutrition. China Agricultural University Press. (in Chinese).

    Google Scholar 

  • Luo, J., Ni, D., Li, C., Du, Y., & Chen, Y. (2021). The relationship between fluoride accumulation in tea plant and changes in leaf cell wall structure and composition under different fluoride conditions. Environmental Pollution, 270, 116283.

    Article  CAS  Google Scholar 

  • Moncada, A., Miceli, A., Sabatino, L., Iapichino, G., D’Anna, F., & Vetrano, F. (2018). Effect of molybdenum rate on yield and quality of lettuce, escarole, and curly endive grown in a floating system. Agronomy, 8, 171.

    Article  CAS  Google Scholar 

  • Pand, D. (2015). Fluoride toxicity stress: Physiological and biochemical consequences on plants. International Journal of Bioresearch and Environmental Agricultural Science, 1, 70–84.

    Google Scholar 

  • Peng, C. Y., Xu, X. F., Ren, Y. F., Niu, H. L., Yang, Y. Q., Hou, R. Y., Wan, X. C., & Cai, H. M. (2021). Fluoride absorption, transportation and tolerance mechanism in Camellia sinensis, and its bioavailability and health risk assessment: A systematic review. Journal of the Science of Food and Agriculture, 101, 379–387.

    Article  CAS  Google Scholar 

  • Plant, W. (1952). Molybdenum Deficiency in Lettuce. Nature, 169, 803–803.

    Article  CAS  Google Scholar 

  • Rizzu, M., Tanda, A., Cappai, C., Roggero, P. P., & Seddaiu, G. (2021). Impacts of soil and water fluoride contamination on the safety and productivity of food and feed crops: A systematic review. Science of the Total Environment, 787, 147650.

    Article  CAS  Google Scholar 

  • Schlesinger, W. H., & Bernhardt, E. S. (2020). Introduction. Biogeochemistry (pp. 3–16). Elsevier. https://doi.org/10.1016/B978-0-12-814608-8.00001-3

    Chapter  Google Scholar 

  • Seslija, S., Veljovic, D., Krusic, M. K., Stevanovic, J., Velickovic, S., & Popovic, I. (2016). Cross-linking of highly methoxylated pectin with copper: The specific anion influence. New Journal of Chemistry, 40, 1618–1625.

    Article  CAS  Google Scholar 

  • Singh, G., Kumari, B., Sinam, G., Kriti Kumar, N., & Mallick, S. (2018). Fluoride distribution and contamination in the water, soil and plants continuum and its remedial technologies, an Indian perspective: A review. Environmental Pollution, 239, 95–108.

    Article  CAS  Google Scholar 

  • Song, J., Hou, C., Guo, J., Niu, Q., Wang, X., Ren, Z., Zhang, Q., Feng, C., Liu, L., Tian, W., & Li, L. (2020). Two new members of CsFEXs couple proton gradients to export fluoride and participate in reducing fluoride accumulation in low-fluoride tea cultivars. Journal of Agriculture and Food Chemistry, 68, 8568–8579.

    Article  CAS  Google Scholar 

  • Stevens, D. P., McLaughlin, M. J., & Alston, A. M. (1998). Phytotoxicity of the fluoride ion and its uptake from solution culture by Avena sativa and Lycopersicon esculentum. Plant and Soil, 200, 119–129.

    Article  CAS  Google Scholar 

  • Szostek, R., & Ciecko, Z. (2017). Effect of soil contamination with fluorine on the yield and content of nitrogen forms in the biomass of crops. Environmental Science and Pollution Research, 24, 8588–8601.

    Article  CAS  Google Scholar 

  • Tang, J., Xiao, T., Wang, S., Lei, J., Zhang, M., Gong, Y., Li, H., Ning, Z., & He, L. (2009). High cadmium concentrations in areas with endemic fluorosis: A serious hidden toxin? Chemosphere, 76, 300–305.

    Article  CAS  Google Scholar 

  • Tausta, S. L., Berbasova, T., Peverelli, M., & Strobel, S. A. (2021). The fluoride transporter FLUORIDE EXPORTER (FEX) is the major mechanism of tolerance to fluoride toxicity in plants. Plant Physiology, 186, 1143–1158.

    Article  CAS  Google Scholar 

  • Ueno, D., Yamaji, N., Kono, I., Huang, C. F., Ando, T., Yano, M., & Ma, J. F. (2010). Gene limiting cadmium accumulation in rice. Proceedings of the National Academy of Sciences, 107, 16500–16505.

    Article  CAS  Google Scholar 

  • USEPA, (2015). Risk Based Screening Table. Composite Table: Summary Tab 0615, in: Agency, U.S.E.P. (Eds.), Washington, DC.

  • Vike, E. (1999). Air-pollutant dispersal patterns and vegetation damage in the vicinity of three aluminium smelters in Norway. Science of the Total Environment, 236, 75–90.

    Article  CAS  Google Scholar 

  • Wang, L. (2020). Investigation on methods to evaluate impacts of “phytoremediation coupled with agro-production” patterns for remediating Cd-contaminated farmland soils. Zhejiang University. (in Chinese).

    Google Scholar 

  • Wang, L., Yang, D., Li, Z., Fu, Y., Liu, X., Brookes, P. C., & Xu, J. (2019a). A comprehensive mitigation strategy for heavy metal contamination of farmland around mining areas: Screening of low accumulated cultivars, soil remediation and risk assessment. Environmental Pollution, 245, 820–828.

    Article  CAS  Google Scholar 

  • Wang, M., Li, X., He, W. Y., Li, J. X., Zhu, Y. Y., Liao, Y. L., Yang, J. Y., & Yang, X. E. (2019b). Distribution, health risk assessment, and anthropogenic sources of fluoride in farmland soils in phosphate industrial area, southwest China. Environmental Pollution, 249, 423–433.

    Article  CAS  Google Scholar 

  • Wang, M., Zhang, L., Liu, Y., Chen, D., Liu, L., Li, C., Kang, K. J., Wang, L., He, Z., & Yang, X. (2021). Spatial variation and fractionation of fluoride in tobacco-planted soils and leaf fluoride concentration in tobacco in Bijie City, Southwest China. Environmental Science and Pollution Research, 28, 26112–26123.

    Article  CAS  Google Scholar 

  • Weinstein, L. H., & Davison, A. W. (2003). Native plant species suitable as bioindicators and biomonitors for airborne fluoride. Environmental Pollution, 125, 3–11.

    Article  CAS  Google Scholar 

  • Xin, J., Zhao, X., Tan, Q., Sun, X., & Hu, C. (2017). Comparison of cadmium absorption, translocation, subcellular distribution and chemical forms between two radish cultivars (Raphanus sativus L.). Ecotoxicology and Environmental Safety, 145, 258–265.

    Article  CAS  Google Scholar 

  • Yang, J. Y., Wang, M., Lu, J., Yang, K., Wang, K. P., Liu, M., Luo, H. Q., Pang, L. N., & Wang, B. (2020). Fluorine in the environment in an endemic fluorosis area in Southwest China. Environmental Research, 184, 109300.

    Article  CAS  Google Scholar 

  • Yang, Y., Liu, Y., Huang, C. F., de Silva, J., & Zhao, F. J. (2016). Aluminium alleviates fluoride toxicity in tea (Camellia sinensis). Plant and Soil, 402, 179–190.

    Article  CAS  Google Scholar 

  • Yu, Y. Q., Cui, S. F., Fan, R. J., Fu, Y. Z., Liao, Y. L., & Yang, J. Y. (2020). Distribution and superposed health risk assessment of fluorine co-effect in phosphorous chemical industrial and agricultural sources. Environmental Pollution, 262, 114249.

    Article  CAS  Google Scholar 

  • Zhang, L., Li, Q., Ma, L., & Ruan, J. (2013). Characterization of fluoride uptake by roots of tea plants (Camellia sinensis (L.) O. Kuntze). Plant and Soil, 366, 659–669.

    Article  CAS  Google Scholar 

  • Zuo, H., Chen, L., Kong, M., Qiu, L., Lu, P., Wu, P., Yang, Y., & Chen, K. (2018). Toxic effects of fluoride on organisms. Life Sciences, 198, 18–24.

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by Science and Technology Project of Guizhou branch of China Tobacco Corporation (#201907), National Natural Science Foundation of China (#41721001; #31872956), and the Fundamental Research Funds for the Central Universities of China.

Author information

Authors and Affiliations

Authors

Contributions

MW: Conceptualization, Methodology, Formal analysis, Writing—Original Draft, Writing—Review & Editing. LL: Methodology, Investigation. DC: Methodology, Validation. YH & AS: Formal analysis, Writing—Review & Editing. ZC & SY: Formal analysis. YF: Resources, Writing—review & editing. XY: Funding acquisition, Project administration, Resources, Supervision, Writing—review & editing.

Corresponding author

Correspondence to Xiaoe Yang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Human or animal rights

In our experiments, the animals were not used. The studies were implemented only on plants.

Consent to participate

The authors agree to participate in this manuscript.

Consent for publication

The authors agree to publish this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 65 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Liu, L., Chen, D. et al. Fluorine in 20 vegetable species and 25 lettuce cultivars grown on a contaminated field adjacent to a brick kiln. Environ Geochem Health 45, 1655–1667 (2023). https://doi.org/10.1007/s10653-022-01268-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01268-y

Keywords

Navigation