Skip to main content

Advertisement

Log in

Exogenous melatonin mitigates chromium toxicity in maize seedlings by modulating antioxidant system and suppresses chromium uptake and oxidative stress

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Melatonin, being an endogenous signaling molecule plays important role in plant growth and stress alleviation. The present study was conducted to evaluate the ameliorative role of melatonin against Cr toxicity in maize seedlings. The Cr toxicity (50, 100 and 200 µM) severely affected hydroponically grown seedlings growth in a dose-dependent manner; however, the melatonin (0.5 and 1.0 µM) application markedly restored toxicity-induced growth retardation. Higher dose of melatonin (1.0 µM) was more effective in case of lower Cr toxicity (50 and 100 µM). Exposure of 200 µM Cr caused 45% and 43% reduction in shoot and root lengths and more than 80% reduction in biomass. In case of 200 µM Cr toxicity, application of 1.0 µM MT effectively restored shoot and root lengths reduction (from 45 to 30%) and biomass decline (from 80 to around 60%). Biomass restoration by 1.0 µM melatonin under 50 and 100 µM Cr was even more pronounced bringing it near to control plants having no Cr exposure. Further, both melatonin levels also improved root tips, root diameter, root volume and root surface area that had been damaged by Cr exposure. The melatonin also alleviated Cr-induced chlorophyll and carotenoids inhibition, improved relative water content, and markedly lowered proline and MDA content in shoots. Lower accumulation of MDA and proline, and greater membrane stability indices indicate that the melatonin conferred better plant growth by playing the role of antioxidant and detoxifying oxidative stress creating substances. Although antioxidant enzymes viz. SOD, POD, CAT and APX activities were also elevated by MT, this increase was not significantly different in the most of cases. No significant difference in NPK contents of shoot was observed by Cr and melatonin application indicating the growth retardation being caused directly by Cr intrinsic toxicity and not by nutrients deficiency. The melatonin-based amelioration of Cr toxicity in maize seedlings seems as the result of its nature as antioxidant, and not by activation/elevation of antioxidative enzymatic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used in this study are available from the corresponding author on reasonable request.

References

  • Abbasi, G. H., Akhtar, J., Anwar-Ul-Haq, M., Ali, S., Chen, Z. H., & Malik, W. (2014). Exogenous potassium differentially mitigates salt stress in tolerant and sensitive maize hybrids. Pakistan Journal of Botany, 46(1), 135–146.

    Google Scholar 

  • Adhikari, A., Adhikari, S., Ghosh, S., Azahar, I., Shaw, A. K., Roy, D., Roy, S., Saha, S., & Hossain, Z. (2020). Imbalance of redox homeostasis and antioxidant defense status in maize under chromium (VI) stress. Environmental and Experimental Botany. https://doi.org/10.1016/j.envexpbot.2019.103873.

    Article  Google Scholar 

  • Aebi, H. (1984). Catalase in vitro. . Elsevier.

    Google Scholar 

  • Afshan, S., Ali, S., Bharwana, S. A., Rizwan, M., Farid, M., Abbas, F., Ibrahim, M., Mehmood, M. A., & Abbasi, G. H. (2015). Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L. Environmental Science and Pollution Research, 22(15), 11679–11689. https://doi.org/10.1007/s11356-015-4396-8.

    Article  CAS  Google Scholar 

  • Afzal, M. J., Khan, M. I., Cheema, S. A., Hussain, S., Anwar-ul-Haq, M., Ali, M. H., & Naveed, M. (2020). Combined application of Bacillus sp. MN-54 and phosphorus improved growth and reduced lead uptake by maize in the lead contaminated soil. Environmental Science and Pollution Research, 27, 44528–44539.

    Article  CAS  Google Scholar 

  • Ali, M., Afzal, S., Parveen, A., Kamran, M., Javed, M. R., Abbasi, G. H., Malik, Z., Riaz, M., Ahmad, S., Chattha, M. S., & Ali, S. (2021). Silicon mediated improvement in the growth and ion homeostasis by decreasing Na+ uptake in maize (Zea mays L.) cultivars exposed to salinity stress. Plant Physiology and Biochemistry, 158, 208–218.

    Article  CAS  Google Scholar 

  • Ali, M., Kamran, M., Abbasi, G. H., Saleem, M. H., Ahmad, S., Parveen, A., Malik, Z., Afzal, S., Ahmar, S., Dawar, K. M., & Ali, S. (2020). Melatonin-induced salinity tolerance by ameliorating osmotic and oxidative stress in the seedlings of two tomato (Solanum lycopersicum L.) cultivars. Journal of Plant Growth Regulation. https://doi.org/10.1007/s00344-020-10273-3.

    Article  Google Scholar 

  • Ali, S., Gill, R. A., Ulhassan, Z., Najeeb, U., Kanwar, M. K., Abid, M., Mwamba, T. M., Huang, Q., & Zhou, W. (2018). Insights on the responses of Brassicanapus cultivars against the cobalt-stress as revealed by carbon assimilation, anatomical changes and secondary metabolites. Environmental and Experimental Botany, 156, 183–196.

    Article  CAS  Google Scholar 

  • Anjum, S. A., Ashraf, U., Khan, I., Tanveer, M., Saleem, M. F., & Wang, L. C. (2016). Aluminum and chromium toxicity in maize: Implications for agronomic attributes, net photosynthesis, physio-biochemical oscillations, and metal accumulation in different plant parts. Water Air and Soil Pollution. https://doi.org/10.1007/s11270-016-3013-x.

    Article  Google Scholar 

  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts - polyphenoloxidase in Beta-Vulgaris. Plant Physiology, 24(1), 1–15.

    Article  CAS  Google Scholar 

  • Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206–216.

    Article  CAS  Google Scholar 

  • Ashraf, S., Naveed, M., Afzal, M., Seleiman, M. F., Al-Suhaibani, N. A., Zahir, Z. A., Mustafa, A., Refay, Y., Alhammad, B. A., Ashraf, S., & Alotaibi, M. (2020). Unveiling the potential of novel macrophytes for the treatment of tannery effluent in vertical flow pilot constructed wetlands. Water, 12(2), 549.

    Article  CAS  Google Scholar 

  • Bharagava, R. N., & Mishra, S. (2018). Hexavalent chromium reduction potential of Cellulosimicrobiumsp isolated from common effluent treatment plant of tannery industries. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.ecoenv.2017.08.040.

    Article  Google Scholar 

  • Chatterjee, J., & Chatterjee, C. (2000). Phytotoxicity of cobalt, chromium and copper in cauliflower. Environmental Pollution, 109(1), 69–74.

    Article  CAS  Google Scholar 

  • Danish, S., Kiran, S., Fahad, S., Ahmad, N., Ali, M. A., Tahir, F. A., Rasheed, M. K., Shahzad, K., Li, X., Wang, D., & Mubeen, M. (2019). Alleviation of chromium toxicity in maize by Fe fortification and chromium tolerant ACC deaminase producing plant growth promoting rhizobacteria. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.ecoenv.2019.109706.

    Article  Google Scholar 

  • Fleta-Soriano, E., Diaz, L., Bonet, E., & Munne-Bosch, S. (2017). Melatonin may exert a protective role against drought stress in maize. Journal of Agronomy and Crop Science, 203(4), 286–294.

    Article  CAS  Google Scholar 

  • Gong, X. Q., Shi, S. T., Dou, F. F., Song, Y., & Ma, F. W. (2017). Exogenous melatonin alleviates alkaline stress in Malushupehensis Rehd by regulating the biosynthesis of polyamines. Molecules. https://doi.org/10.3390/molecules22091542.

    Article  Google Scholar 

  • Hasan, M., Ahammed, G. J., Yin, L., Shi, K., Xia, X., Zhou, Y., Yu, J., & Zhou, J. (2015). Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanumlycopersicum L. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2015.00601.

    Article  Google Scholar 

  • Huang, B., Chen, Y. E., Zhao, Y. Q., Ding, C. B., Liao, J. Q., Hu, C., Zhou, L. J., Zhang, Z. W., Yuan, S., & Yuan, M. (2019). Exogenous melatonin alleviates oxidative damages and protects photosystem ii in maize seedlings under drought stress. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2019.00677.

    Article  Google Scholar 

  • Jiang, C. Q., Cui, Q. R., Feng, K., Xu, D. F., Li, C. F., & Zheng, Q. S. (2016). Melatonin improves antioxidant capacity and ion homeostasis and enhances salt tolerance in maize seedlings. Acta Physiologiae Plantarum, 38(4), 82. https://doi.org/10.1007/s11738-016-2101-2.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants. (4th ed.). CRC Press.

    Google Scholar 

  • Kamran, M., Danish, M., Saleem, M. H., Malik, Z., Parveen, A., Abbasi, G. H., Jamil, M., Ali, S., Afzal, S., Riaz, M., & Rizwan, M. (2021). Application of abscisic acid and 6-benzylaminopurine modulated morpho-physiological and antioxidative defense responses of tomato (Solanum lycopersicum L.) by minimizing cobalt uptake. Chemosphere, 263, 128169.

    Article  CAS  Google Scholar 

  • Kamran, M., Malik, Z., Parveen, A., Huang, L., Riaz, M., Bashir, S., Mustafa, A., Abbasi, G. H., Xue, B., & Ali, U. (2019). Ameliorative effects of biochar on rapeseed (Brassica napus L.) growth and heavy metal immobilization in soil irrigated with untreated wastewater. Journal of Plant Growth Regulation. https://doi.org/10.1007/s00344-019-09980-3.

    Article  Google Scholar 

  • Kamran, M., Malik, Z., Parveen, A., Zong, Y., Abbasi, G. H., Rafiq, M. T., Shaaban, M., Mustafa, A., Bashir, S., Rafay, M., & Mehmood, S. (2019). Biochar alleviates Cd phytotoxicity by minimizing bioavailability and oxidative stress in pakchoi (Brassica chinensis L.) cultivated in Cd-polluted soil. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2019.109500.

    Article  Google Scholar 

  • Kamran, M., Parveen, A., Ahmar, S., Malik, Z., Hussain, S., Chattha, M. S., Saleem, M. H., Adil, M., Heidari, P., & Chen, J. T. (2020). An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. International Journal of Molecular Sciences, 21(1), 148.

    Article  CAS  Google Scholar 

  • Kanwar, M. K., Yu, J. Q., & Zhou, J. (2018). Phytomelatonin: Recent advances and future prospects. Journal of Pineal Research. https://doi.org/10.1111/jpi.12526.

    Article  Google Scholar 

  • Kaya, C., Okant, M., Ugurlar, F., Alyemeni, M. N., Ashraf, M., & Ahmad, P. (2019). Melatonin-mediated nitric oxide improves tolerance to cadmium toxicity by reducing oxidative stress in wheat plants. Chemosphere, 225, 627–638.

    Article  CAS  Google Scholar 

  • Lazcano-Ferrat, I., & Lovatt, C. J. (1999). Relationship between relative water content, nitrogen pools, and growth of Phaseolus vulgaris L. and P-acutifolius A. Gray during water deficit. Crop Science, 39(2), 467–475.

    Article  CAS  Google Scholar 

  • Li, C., Liang, B. W., Chang, C., Wei, Z. W., Zhou, S. S., & Ma, F. W. (2016). Exogenous melatonin improved potassium content in Malus under different stress conditions. Journal of Pineal Research, 61(2), 218–229.

    Article  Google Scholar 

  • Li, M. Q., Hasan, M. K., Li, C. X., Ahammed, G. J., Xia, X. J., Shi, K., Zhou, Y. H., Reiter, R. J., Yu, J. Q., Xu, M. X., & Zhou, J. (2016). Melatonin mediates selenium-induced tolerance to cadmium stress in tomato plants. Journal of Pineal Research, 61(3), 291–302.

    Article  CAS  Google Scholar 

  • Li, X., Brestic, M., Tan, D. X., Zivcak, M., Zhu, X., Liu, S., Song, F., Reiter, R. J., & Liu, F. (2018). Melatonin alleviates low PS I-limited carbon assimilation under elevated CO2 and enhances the cold tolerance of offspring in chlorophyll b-deficient mutant wheat. Journal of Pineal Research. https://doi.org/10.1111/jpi.12453.

    Article  Google Scholar 

  • Liang, C., Li, A., Yu, H., Li, W., Liang, C., Guo, S., Zhang, R., & Chu, C. (2017). Melatonin regulates root architecture by modulating auxin response in rice. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2017.00134.

    Article  Google Scholar 

  • Lin, L., Li, J., Chen, F., Liao, M. A., Tang, Y., Liang, D., Xia, H., Lai, Y., Wang, X., Chen, C., & Ren, W. (2018). Effects of melatonin on the growth and cadmium characteristics of Cyphomandrabetacea seedlings. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-018-6481-1.

    Article  Google Scholar 

  • Mahajan, P., Singh, H. P., Batish, D. R., & Kohli, R. K. (2013). Cr(vi) imposed toxicity in maize seedlings assessed in terms of disruption in carbohydrate metabolism. Biological Trace Element Research, 156(1–3), 316–322.

    Article  CAS  Google Scholar 

  • Manchester, L. C., Coto-Montes, A., Boga, J. A., Andersen, L. P. H., Zhou, Z., Galano, A., Vriend, J., Tan, D. X., & Reiter, R. J. (2015). Melatonin: An ancient molecule that makes oxygen metabolically tolerable. Journal of Pineal Research, 59(4), 403–419.

    Article  CAS  Google Scholar 

  • Marta, B., Szafrańska, K., & Posmyk, M. M. (2016). Exogenous melatonin improves antioxidant defense in cucumber seeds (Cucumis sativus L.) germinated under chilling stress. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2016.00575.

    Article  Google Scholar 

  • McCarroll, N., Keshava, N., Chen, J., Akerman, G., Kligerman, A., & Rinde, E. (2010). An evaluation of the mode of action framework for mutagenic carcinogens case study II: Chromium (VI). Environmental and Molecular Mutagenesis, 51(2), 89–111.

    CAS  Google Scholar 

  • Nakano, Y., & Asada, K. (1981). Hydrogen-peroxide is scavenged by ascorbate-specific peroxidase in spinach-chloroplasts. Plant and Cell Physiology, 22(5), 867–880.

    CAS  Google Scholar 

  • Newbery, R. M., Wolfenden, J., Mansfield, T. A., & Harrison, A. F. (1995). Nitrogen, phosphorus and potassium uptake and demand in Agrostis capillaris: The influence of elevated CO2 and nutrient supply. New Phytologist, 130(4), 565–574. https://doi.org/10.1111/j.1469-8137.1995.tb04333.x.

    Article  CAS  Google Scholar 

  • Oukarroum, A., Bussotti, F., Goltsev, V., & Kalaji, H. M. (2015). Correlation between reactive oxygen species production and photochemistry of photosystems I and II in Lemnagibba L. plants under salt stress. Environmental and Experimental Botany, 109, 80–88.

    Article  CAS  Google Scholar 

  • Parveen, A., Saleem, M. H., Kamran, M., Haider, M. Z., Chen, J. T., Malik, Z., Rana, M. S., Hassan, A., Hur, G., Javed, M. T., & Azeem, M. (2020). Effect of citric acid on growth, ecophysiology, chloroplast ultrastructure, and phytoremediation potential of jute (Corchorus capsularis L.) seedlings exposed to copper stress. Biomolecules. https://doi.org/10.3390/biom10040592.

    Article  Google Scholar 

  • Posmyk, M. M., Kuran, H., Marciniak, K., & Janas, K. M. (2008). Presowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentrations. Journal of Pineal Research, 45(1), 24–31.

    Article  CAS  Google Scholar 

  • Reiter, R. J., Tan, D. X., & Galano, A. (2014). Melatonin: Exceeding expectations. Physiology, 29(5), 325–333.

    Article  CAS  Google Scholar 

  • Reiter, R. J., Tan, D. X., Zhou, Z., Cruz, M. H. C., Fuentes-Broto, L., & Galano, A. (2015). Phytomelatonin: Assisting plants to survive and thrive. Molecules, 20(4), 7396–7437.

    Article  CAS  Google Scholar 

  • Riaz, M., Kamran, M., Fang, Y., Wang, Q., Cao, H., Yang, G., Deng, L., Wang, Y., Zhou, Y., Anastopoulos, I., & Wang, X. (2021). Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2020.123919.

    Article  Google Scholar 

  • Sairam, R. K., Rao, K. V., & Srivastava, G. C. (2002). Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, 163(5), 1037–1046.

    Article  CAS  Google Scholar 

  • Saleem, M. H., Kamran, M., Zhou, Y., Parveen, A., Rehman, M., Ahmar, S., Malik, Z., Mustafa, A., Anjum, R. M. A., Wang, B., & Liu, L. (2020). Appraising growth, oxidative stress and copper phytoextraction potential of flax (Linum usitatissimum L.) grown in soil differentially spiked with copper. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2019.109994.

    Article  Google Scholar 

  • Sami, A., Shah, F. A., Abdullah, M., Zhou, X., Yan, Y., Zhu, Z., & Zhou, K. (2020). Melatonin mitigates cadmium and aluminium toxicity through modulation of antioxidant potential in Brassica napus L. Plant Biology, 22(4), 679–690.

    Article  CAS  Google Scholar 

  • Seleiman, M. F., & Kheir, A. M. S. (2018). Maize productivity, heavy metals uptake and their availability in contaminated clay and sandy alkaline soils as affected by inorganic and organic amendments. Chemosphere, 204, 514–522. https://doi.org/10.1016/j.chemosphere.2018.04.073.

    Article  CAS  Google Scholar 

  • Seleiman, M. F., Ali, S., Refay, Y., Rizwan, M., Alhammad, B. A., & El-Hendawy, S. E. (2020). Chromium resistant microbes and melatonin reduced Cr uptake and toxicity, improved physio-biochemical traits and yield of wheat in contaminated soil. Chemosphere, 250, 126239. https://doi.org/10.1016/j.chemosphere.2020.126239.

    Article  CAS  Google Scholar 

  • Seleiman, M. F., Kheir, A., Al-Dhumri, S., Alghamdi, A. G., Omar, E. S. H., Aboelsoud, H. M., Abdella, K. A., & Abou El Hassan, W. H. (2019). Exploring optimal tillage improved soil characteristics and productivity of wheat irrigated with different water qualities. Agronomy, 9(5), 233.

    Article  CAS  Google Scholar 

  • Seleiman, M. F., Santanen, A., & Mäkelä, P. S. A. (2020). Recycling sludge on cropland as fertilizer—Advantages and risks. Resources, Conservation and Recycling, 155, 104647. https://doi.org/10.1016/j.resconrec.2019.104647.

    Article  Google Scholar 

  • Shahid, M., Shamshad, S., Rafiq, M., Khalid, S., Bibi, I., Niazi, N. K., Dumat, C., & Rashid, M. I. (2017). Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere, 178, 513–533. https://doi.org/10.1016/j.chemosphere.2017.03.074.

    Article  CAS  Google Scholar 

  • Singh, H. P., Mahajan, P., Kaur, S., Batish, D. R., & Kohli, R. K. (2013). Chromium toxicity and tolerance in plants. Environmental Chemistry Letters, 11(3), 229–254.

    Article  CAS  Google Scholar 

  • Singh, V. P., Kumar, J., Singh, M., Singh, S., Prasad, S. M., Dwivedi, R., & Singh, M. P. V. V. B. (2016). Role of salicylic acid-seed priming in the regulation of chromium (VI) and UV-B toxicity in maize seedlings. Plant Growth Regulation, 78(1), 79–91. https://doi.org/10.1007/s10725-015-0076-4.

    Article  CAS  Google Scholar 

  • Sofy, M. R., Seleiman, M. F., Alhammad, B. A., Alharbi, B. M., & Mohamed, H. I. (2020). Minimizing adverse effects of Pb on maize plants by combined treatment with jasmonic, salicylic acids and proline. Agronomy, 10(5), 699.

    Article  CAS  Google Scholar 

  • Ulhassan, Z., Huang, Q., Gill, R. A., Ali, S., Mwamba, T. M., Ali, B., Hina, F., & Zhou, W. (2019). Protective mechanisms of melatonin against selenium toxicity in Brassica napus: Insights into physiological traits, thiol biosynthesis and antioxidant machinery. Bmc Plant Biology. https://doi.org/10.1186/s12870-019-2110-6.

    Article  Google Scholar 

  • Wang, P., Sun, X., Li, C., Wei, Z. W., Liang, D., & Ma, F. W. (2013). Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. Journal of Pineal Research, 54(3), 292–302.

    Article  CAS  Google Scholar 

  • Wang, Z. X., Chen, J. Q., Chai, L. Y., Yang, Z. H., Huang, S. H., & Zheng, Y. (2011). Environmental impact and site-specific human health risks of chromium in the vicinity of a ferro-alloy manufactory, China. Journal of Hazardous Materials, 190(1–3), 980–985.

    Article  CAS  Google Scholar 

  • Wellburn, A. R. (1994). The spectral determination of chlorophyll-a and chlorophhyll-b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144(3), 307–313.

    Article  CAS  Google Scholar 

  • Wolf, B. (1982). A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Communications in Soil Science and Plant Analysis, 13(12), 1035–1059.

    Article  CAS  Google Scholar 

  • Yang, X. L., Xu, H., Li, D., Gao, X., Li, T. L., & Wang, R. (2018). Effect of melatonin priming on photosynthetic capacity of tomato leaves under low-temperature stress. Photosynthetica, 56(3), 884–892.

    Article  CAS  Google Scholar 

  • Ye, T. T., Shi, H. T., Wang, Y. P., & Chan, Z. L. (2015). Contrasting changes caused by drought and submergence stresses in bermuda grass (Cynodon dactylon). Frontiers in Plant Science. https://doi.org/10.3389/fpls.2015.00951.

    Article  Google Scholar 

  • Zhang X.Z. (1992). The measurement and mechanism of lipid peroxidation and SOD, POD and CAT activities in biological system. In, research methodology of crop physiology (pp. 208–211). Agriculture Press, Beijing, China.

  • Zhang, N., Sun, Q., Zhang, H., Cao, Y., Weeda, S., Ren, S., & Guo, Y. D. (2015). Roles of melatonin in abiotic stress resistance in plants. Journal of Experimental Botany, 66(3), 647–656.

    Article  CAS  Google Scholar 

  • Zhang, N., Zhao, B., Zhang, H. J., Weeda, S., Yang, C., Yang, Z. C., Ren, S., & Guo, Y. D. (2013). Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). Journal of Pineal Research, 54(1), 15–23.

    Article  CAS  Google Scholar 

  • Zhou, W., Zhao, D., & Lin, X. (1997). Effects of waterlogging on nitrogen accumulation and alleviation of waterlogging damage by application of nitrogen fertilizer and mixtalol in winter rape (Brassica napus L). Journal of Plant Growth Regulation, 16(1), 47–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the Soil Salinity Laboratory (SSL) of College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur Pakistan for providing necessary experimental and analytical facilities. The authors are also grateful to all the anonymous reviewers for their valuable comments and suggestions to improve the quality of the manuscript.

Funding

The authors declare that no external funds were received to conduct this research.

Author information

Authors and Affiliations

Authors

Contributions

ZM contributed to conceptualization, methodology, validation, writing—original draft preparation, supervision. SA contributed to methodology, validation, investigation, writing—original draft preparation. MD contributed to conceptualization, data curation, visualization, supervision, writing—reviewing and editing. GHA contributed to investigation, data curation. MIK contributed to writing—reviewing and editing. MK and AZM contributed to visualization, software. MTH, MNA and MR contributed to methodology, formal analysis.

Corresponding author

Correspondence to Muhammad Dawood.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Consent for publication

All the authors have agreed to publish this work in Environmental Geochemistry and Health, and no part of this manuscript is either published earlier, or under consideration anywhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, Z., Afzal, S., Dawood, M. et al. Exogenous melatonin mitigates chromium toxicity in maize seedlings by modulating antioxidant system and suppresses chromium uptake and oxidative stress. Environ Geochem Health 44, 1451–1469 (2022). https://doi.org/10.1007/s10653-021-00908-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-00908-z

Keywords

Navigation