Skip to main content

Advertisement

Log in

The potential of microbes and sulfate in reducing arsenic phytoaccumulation by maize (Zea mays L.) plants

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Arsenic (As) contamination in soil–plant system is an important environmental, agricultural and health issue globally. The microbe- and sulfate-mediated As cycling in soil–plant system may depend on soil sulfate levels, and it can be used as a potential strategy to reduce plant As uptake and improve plant growth. Here, we investigated the role of soil microbes (SMs) to examine As phytoaccumulation using maize as a test plant, under varying sulfate levels (S-0, S-5, S-25 mmol kg−1) and As stress. The addition of sulfate and SMs promoted maize plant growth and reduced As concentration in shoots compared to sulfate-treated plants without SMs. Results revealed that the SMs-S-5 treatment proved to be the most promising in reducing As uptake by 27% and 48% in root and shoot of the maize plants, respectively. The SMs-S treatments, primarily with S-5, enhanced plant growth, shoot dry biomass, Chl a, b and total Chl (a + b) contents, and gas exchange attributes of maize plants. Similarly, the antioxidant defense in maize plants was increased significantly in SMs-S-treated plants, notably with SMs-S-5 treatment. Overall, the SMs-S-5-treated plants possessed improved plant growth, dry biomass, physiology and antioxidant defense system and decrease in plant shoot As concentration. The outcomes of this study suggest that sulfate supplementation in soil along with SMs could assist in reducing As accumulation by maize plants, thus providing a sustainable and eco-friendly bioremediation strategy in limiting As exposure.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbas, G., Murtaza, B., Bibi, I., Shahid, M., Niazi, N. K., Khan, M. I., Amjad, M., Hussain, M. & Natasha. (2018). Arsenic uptake, toxicity, detoxification, and speciation in plants: Physiological, biochemical, and molecular aspects. International Journal of Environmental Research and Public Health, 15, 59. https://doi.org/10.3390/ijerph15010059.

    Article  CAS  Google Scholar 

  • Afroz, H., Su, S., Carey, M., Meharg, A. A., & Meharg, C. (2019). Inhibition of microbial methylation via arsM in the rhizosphere: Arsenic speciation in the soil to plant continuum. Environmental Science and Technology, 53, 3451–3463.

    CAS  Google Scholar 

  • Burton, E. D., Johnston, S. G., & Kocar, B. D. (2014). Arsenic mobility during flooding of contaminated soil: The effect of microbial sulfate reduction. Environmental Science and Technology, 48, 13660–13667.

    CAS  Google Scholar 

  • Burton, E. D., Johnston, S. G., Kraal, P., Bush, R. T., & Claff, S. (2013a). Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite. Environmental Science and Technology, 47, 2221–2229.

    CAS  Google Scholar 

  • Burton, E. D., Johnston, S. G., & Planer-Friedrich, B. (2013b). Coupling of arsenic mobility to sulfur transformations during microbial sulfate reduction in the presence and absence of humic acid. Chemical Geology, 343, 12–24.

    CAS  Google Scholar 

  • Campos, N. V., Loureiro, M. E., & Azevedo, A. A. (2014). Differences in phosphorus translocation contributes to differential arsenic tolerance between plants of Borreria verticillata (Rubiaceae) from mine and non-mine sites. Environmental Science and Pollution Research, 21, 5586–5596.

    CAS  Google Scholar 

  • Caporale, A. G., Pigna, M., Sommella, A., Dynes, J. J., Cozzolino, V., & Violante, A. (2013). Influence of compost on the mobility of arsenic in soil and its uptake by bean plants (Phaseolus vulgaris L.) irrigated with arsenite-contaminated water. Journal of Environmental Management, 128, 837–843.

    CAS  Google Scholar 

  • Chandrakar, V., Dubey, A., & Keshavkant, S. (2016a). Modulation of antioxidant enzymes by salicylic acid in arsenic exposed Glycine max L. Journal of Soil Science and Plant Nutrition, 16, 662–676.

    CAS  Google Scholar 

  • Chandrakar, V., Naithani, S. C., & Keshavkant, S. (2016b). Arsenic-induced metabolic disturbances and their mitigation mechanisms in crop plants: A review. Biologia, 71, 367–377.

    CAS  Google Scholar 

  • Chandrakar, V., Yadu, B., Meena, R. K., Dubey, A., & Keshavkant, S. (2017). Arsenic-induced genotoxic responses and their amelioration by diphenylene iodonium, 24-epibrassinolide and proline in Glycine max L. Plant Physiology and Biochemistry, 112, 74–86.

    CAS  Google Scholar 

  • Debona, D., Rodrigues, F. A., & Datnoff, L. E. (2017). Silicon’s role in abiotic and biotic plant stresses. Annual Review of Phytopathology, 55, 85–107.

    CAS  Google Scholar 

  • Dhindsa, R. S., Plumb-Dhindsa, P., & Thorpe, T. A. (1981). Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32, 93–101.

    CAS  Google Scholar 

  • Dixit, G., Singh, A. P., Kumar, A., Mishra, S., Dwivedi, S., Kumar, S., Trivedi, P. K., Pandey, V., & Tripathi, R. D. (2016). Reduced arsenic accumulation in rice (Oryza sativa L.) shoot involves sulfur mediated improved thiol metabolism, antioxidant system and altered arsenic transporters. Plant Physiology and Biochemistry, 99, 86–96.

    CAS  Google Scholar 

  • Dixit, G., Singh, A. P., Kumar, A., Singh, P. K., Kumar, S., Dwivedi, S., Trivedi, P. K., Pandey, V., Norton, G. J., Dhankher, O. P., & Tripathi, R. D. (2015). Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defense system in rice. Journal of Hazardous Materials, 298, 241–251.

    CAS  Google Scholar 

  • Du, L., Xia, X., Lan, X., Liu, M., Zhao, L., Zhang, P., & Wu, Y. (2017). Influence of arsenic stress on physiological, biochemical, and morphological characteristics in seedlings of two cultivars of maize (Zea mays L.). Water, Air, and Soil Pollution. https://doi.org/10.1007/s11270-016-3231-2.

    Article  Google Scholar 

  • Durães, N., Bobos, I., Ferreira da Silva, E., & Dekayir, A. (2015). Copper, zinc and lead biogeochemistry in aquatic and land plants from the Iberian Pyrite Belt (Portugal) and north of Morocco mining areas. Environmental Science and Pollution Research, 22, 2087–2105.

    Google Scholar 

  • Fan, J.-L., Hu, Z.-Y., Ziadi, N., & Xia, X. (2010). Excessive sulfur supply reduces cadmium accumulation in brown rice (Oryza sativa L.). Environmental Pollution, 158, 409–415.

    CAS  Google Scholar 

  • Farooq, M. A., Islam, F., Ali, B., Najeeb, U., Mao, B., Gill, R. A., Yan, G., Siddique, K. H. M., & Zhou, W. (2016). Arsenic toxicity in plants: Cellular and molecular mechanisms of its transport and metabolism. Environmental and Experimental Botany, 132, 42–52.

    CAS  Google Scholar 

  • Fisher, J. C., Wallschläger, D., Planer-Friedrich, B., & Hollibaugh, J. T. (2008). A new role for sulfur in arsenic cycling. Environmental Science and Technology, 42, 81–85.

    CAS  Google Scholar 

  • Flora, S. J. (2011). Arsenic-induced oxidative stress and its reversibility. Free Radical Biology and Medicine, 51, 257–281.

    CAS  Google Scholar 

  • Gabarrón, M., Faz, A., & Acosta, J. (2018). Use of multivariable and redundancy analysis to assess the behavior of metals and arsenic in urban soil and road dust affected by metallic mining as a base for risk assessment. Journal of Environmental Management, 206, 192–201.

    Google Scholar 

  • Gao, Y., Miao, C., Xia, J., Mao, L., Wang, Y., & Zhou, P. (2012). Plant diversity reduces the effect of multiple heavy metal pollution on soil enzyme activities and microbial community structure. Frontiers of Environmental Science and Engineering, 6, 213–223.

    CAS  Google Scholar 

  • Ge, T.-D., Sui, F.-G., Bai, L.-P., Lu, Y.-Y., & Zhou, G.-S. (2006). Effects of water stress on the protective enzyme activities and lipid peroxidation in roots and leaves of summer maize. Agricultural Sciences in China, 5, 291–298.

    Google Scholar 

  • Gomes, M. P., Soares, A. M., & Garcia, Q. S. (2014). Phosphorous and sulfur nutrition modulate antioxidant defenses in Myracrodruom urundeuva plants exposed to arsenic. Journal of Hazardous Materials, 276, 97–104.

    CAS  Google Scholar 

  • Guo, B., Liang, Y. C., Zhu, Y. G., & Zhao, F. J. (2007). Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Environmental Pollution, 147, 743–749.

    CAS  Google Scholar 

  • Gupta, D., Tripathi, R., Mishra, S., Srivastava, S., Dwivedi, S., Rai, U., Yang, X., Huanj, H., & Inouhe, M. (2008). Arsenic accumulation in root and shoot vis-a-vis its effects on growth and level of phytochelatins in seedlings of Cicer arietinum L. Journal of Environmental Biology, 29, 281.

    CAS  Google Scholar 

  • Han, Y.-S., Park, J.-H., Min, Y., & Lim, D.-H. (2020). Competitive adsorption between phosphate and arsenic in soil containing iron sulfide: XAS experiment and DFT calculation approaches. Chemical Engineering Journal, 397, 125426.

    CAS  Google Scholar 

  • Hasanuzzaman, M., Nahar, K., & Fujita, M. (2015). Arsenic toxicity in plants and possible remediation. (pp. 433–501). Prospects and challenges.

    Google Scholar 

  • Hussain, M. M., Bibi, I., Shahid, M., Shaheen, S. M., Shakoor, M. B., Bashir, S., Younas, F., Rinklebe, J., & Niazi, N. K. (2019). Chapter Two: Biogeochemical cycling, speciation and transformation pathways of arsenic in aquatic environments with the emphasis on algae. In A. C. Duarte & V. Reis (Eds.), Comprehensive analytical chemistry. Elsevier.

    Google Scholar 

  • Hussain, M. M., Wang, J., Bibi, I., Shahid, M., Niazi, N. K., Iqbal, J., Mian, I. A., Shaheen, S. M., Bashir, S., Shah, N. S., Hina, K., & Rinklebe, J. (2021). Arsenic speciation and biotransformation pathways in the aquatic ecosystem: The significance of algae. Journal of Hazardous Materials, 403, 124027.

    CAS  Google Scholar 

  • Irem, S., Islam, E., Maathuis, F. J., Niazi, N. K., & Li, T. (2019). Assessment of potential dietary toxicity and arsenic accumulation in two contrasting rice genotypes: Effect of soil amendments. Chemosphere, 225, 104–114.

    CAS  Google Scholar 

  • Jia, Y., Bao, P., & Zhu, Y.-G. (2015). Arsenic bioavailability to rice plant in paddy soil: influence of microbial sulfate reduction. Journal of Soils and Sediments, 15, 1960–1967.

    CAS  Google Scholar 

  • Jing, R., & Kjellerup, B. V. (2018). Biogeochemical cycling of metals impacting by microbial mobilization and immobilization. Journal of Environmental Sciences, 66, 146–154.

    Google Scholar 

  • Kartik, V., Jinal, H., & Amaresan, N. (2016). Characterization of cadmium-resistant bacteria for its potential in promoting plant growth and cadmium accumulation in Sesbania bispinosa root. International journal of phytoremediation, 18, 1061–1066.

    CAS  Google Scholar 

  • Ko, M.-S., Park, H.-S., & Lee, J.-U. (2017). Influence of indigenous bacteria stimulation on arsenic immobilization in field study. CATENA, 148, 46–51.

    CAS  Google Scholar 

  • Kumar, A., Singh, R. P., Singh, P. K., Awasthi, S., Chakrabarty, D., Trivedi, P. K., & Tripathi, R. D. (2014). Selenium ameliorates arsenic induced oxidative stress through modulation of antioxidant enzymes and thiols in rice (Oryza sativa L.). Ecotoxicology, 23, 1153–1163.

    CAS  Google Scholar 

  • Kumarathilaka, P., Seneweera, S., Meharg, A., & Bundschuh, J. (2018). Arsenic speciation dynamics in paddy rice soil-water environment: sources, physico-chemical, and biological factors: A review. Water Research, 140, 403–414.

    CAS  Google Scholar 

  • Lagriffoul, A., Mocquot, B., Mench, M., & Vangronsveld, J. (1998). Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plants (Zea mays L.). Plant and Soil, 200, 241–250.

    CAS  Google Scholar 

  • Langner, H. W., & Inskeep, W. P. (2000). Microbial reduction of arsenate in the presence of ferrihydrite. Environmental Science and Technology, 34, 3131–3136.

    CAS  Google Scholar 

  • Langner, P., Mikutta, C., & Kretzschmar, R. (2012). Arsenic sequestration by organic sulphur in peat. Nature Geoscience, 5, 66–73.

    CAS  Google Scholar 

  • Lee, P.-K., Yu, S., Jeong, Y.-J., Seo, J., Choi, S. G., & Yoon, B.-Y. (2019). Source identification of arsenic contamination in agricultural soils surrounding a closed Cu smelter, South Korea. Chemosphere, 217, 183–194.

    CAS  Google Scholar 

  • Lemos Batista, B., Nigar, M., Mestrot, A., Alves Rocha, B., Barbosa Júnior, F., Price, A. H., Raab, A., & Feldmann, J. (2014). Identification and quantification of phytochelatins in roots of rice to long-term exposure: Evidence of individual role on arsenic accumulation and translocation. Journal of experimental botany, 65, 1467–1479.

    Google Scholar 

  • Li, F., Li, Z., Mao, P., Li, Y., Li, Y., McBride, M. B., Wu, J., & Zhuang, P. (2019). Heavy metal availability, bioaccessibility, and leachability in contaminated soil: Effects of pig manure and earthworms. Environmental Science and Pollution Research, 26, 20030–20039.

    CAS  Google Scholar 

  • Lichtenthaler, H. K. (1987). [34] Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes Methods in enzymology. Elsevier.

    Google Scholar 

  • Mehmood, T., Bibi, I., Shahid, M., Niazi, N. K., Murtaza, B., Wang, H., Ok, Y. S., Sarkar, B., Javed, M. T., & Murtaza, G. (2017). Effect of compost addition on arsenic uptake, morphological and physiological attributes of maize plants grown in contrasting soils. Journal of Geochemical Exploration, 178, 83–91.

    CAS  Google Scholar 

  • Mishra, S., Alfeld, M., Sobotka, R., Andresen, E., Falkenberg, G., & Küpper, H. (2016). Analysis of sublethal arsenic toxicity to Ceratophyllum demersum: Subcellular distribution of arsenic and inhibition of chlorophyll biosynthesis. Journal of experimental botany, 67, 4639–4646.

    CAS  Google Scholar 

  • Natasha, Bibi, I., Shahid, M., Niazi, N. K., Younas, F., Naqvi, S. R., Shaheen, S. M., Imran, M., Wang, H., Hussaini, K. M., Zhang, H., & Rinklebe, J. (2021). Hydrogeochemical and health risk evaluation of arsenic in shallow and deep aquifers along the different floodplains of Punjab Pakistan. Journal of Hazardous Materials, 402, 124074. https://doi.org/10.1016/j.jhazmat.2020.124074.

    Article  CAS  Google Scholar 

  • Natasha, Shahid, M., Dumat, C., Khalid, S., Rabbani, F., Farooq, A. B. U., Amjad, M., Abbas, G., & Niazi, N. K. (2018). Foliar uptake of arsenic nanoparticles by spinach: an assessment of physiological and human health risk implications. Environmental Science and Pollution Research International, 26, 20121–20131.

    Google Scholar 

  • Natasha, Shahid, M., Farooq, A. B. U., Rabbani, F., Khalid, S., & Dumat, C. (2020). Risk assessment and biophysiochemical responses of spinach to foliar application of lead oxide nanoparticles: A multivariate analysis. Chemosphere, 245, 125605. https://doi.org/10.1016/j.chemosphere.2019.125605.

    Article  CAS  Google Scholar 

  • Natasha, Shahid, M., & Khalid, S. (2020). Foliar application of lead and arsenic solutions to Spinacia oleracea: Biophysiochemical analysis and risk assessment. Environmental Science and Pollution Research, 27, 39763–39773.

    CAS  Google Scholar 

  • Natasha, Shahid, M., Sardar, A., Anwar, H., Khalid, S., Shah, S.H., Shah, A.H., Bilal, M., 2020c. Effect of co-application of wastewater and freshwater on the physiological properties and trace element content in Raphanus sativus: soil contamination and human health. Environ Geochem Health. https://doi.org/10.1007/s10653-020-00635-x.

    Article  Google Scholar 

  • Niazi, N. K., Bibi, I., Fatimah, A., Shahid, M., Javed, M. T., Wang, H., Ok, Y. S., Bashir, S., Murtaza, B., & Saqib, Z. A. (2017). Phosphate-assisted phytoremediation of arsenic by Brassica napus and Brassica juncea: morphological and physiological response. International Journal of Phytoremediation, 19, 670–678.

    CAS  Google Scholar 

  • Niazi, N. K., & Burton, E. D. (2016). Arsenic sorption to nanoparticulate mackinawite (FeS): an examination of phosphate competition. Environmental Pollution, 218, 111–117.

    CAS  Google Scholar 

  • Niazi, N. K., Singh, B., Van Zwieten, L., & Kachenko, A. G. (2012). Phytoremediation of an arsenic-contaminated site using Pteris vittata L. and Pityrogramma calomelanos var. austroamericana: a long-term study. Environmental Science and Pollution Research, 19, 3506–3515.

    CAS  Google Scholar 

  • O’Day, P. A., Vlassopoulos, D., Root, R., & Rivera, N. (2004). The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. Proceedings of the National Academy of Sciences, 101, 13703–13708.

    CAS  Google Scholar 

  • Pandey, N., Chandrakar, V., Keshavkant, S., 2018. Mitigating Arsenic Toxicity in Plants: Role of Microbiota. Mechanisms of Arsenic Toxicity and Tolerance in Plants. Springer, pp. 191–218.

  • Patra, M., Bhowmik, N., Bandopadhyay, B., & Sharma, A. (2004). Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environmental and Experimental Botany, 52, 199–223.

    CAS  Google Scholar 

  • Qin, J., Niu, A., Liu, Y., & Lin, C. (2020). Arsenic in leafy vegetable plants grown on mine water-contaminated soils: Uptake, human health risk and remedial effects of biochar. Journal of Hazardous Materials, 402, 123488.

    Google Scholar 

  • Ratnayake, M., Leonard, R., & Menge, J. (1978). Root exudation in relation to supply of phosphorus and its possible relevance to mycorrhizal formation. New Phytologist, 81, 543–552.

    CAS  Google Scholar 

  • Rios-Valenciana, E. E., Briones-Gallardo, R., Chazaro-Ruiz, L. F., Lopez-Lozano, N. E., Sierra-Alvarez, R., & Celis, L. B. (2020). Dissolution and final fate of arsenic associated with gypsum, calcite, and ferrihydrite: Influence of microbial reduction of As (V), sulfate, and Fe (III). Chemosphere, 239, 124823.

    CAS  Google Scholar 

  • Saleem, M. U., Asghar, H. N., Zahir, Z. A., & Muhammad, S. (2018). Integrated effect of compost and Cr6+ reducing bacteria on antioxidant system and plant physiology of alfalfa. International Journal of Agriculture and Biology, 20, 2745–2752.

    Google Scholar 

  • Samrana, S., Ali, I., Azizullah, A., Daud, M., & Gan, Y. (2017). Arsenic-Based Pollutio n Status in Pakistan. Ann Agric Crop Sci, 2, 1027.

    Google Scholar 

  • Sardar, A., Shahid, M., Natasha, Khalid, S., Anwar, H., Tahir, M., Shah, G. M., & Mubeen, M. (2020). Risk assessment of heavy metal(loid)s via Spinacia oleracea ingestion after sewage water irrigation practices in Vehari District. Environmental Science and Pollution Research, 27, 39841–39851.

    CAS  Google Scholar 

  • Sarwar, T., Shahid, M., Natasha, Khalid, S., Shah, A. H., Ahmad, N., Naeem, M. A., ul Haq, Z., Murtaza, B., & Bakhat, H. F. (2020). Quantification and risk assessment of heavy metal build-up in soil–plant system after irrigation with untreated city wastewater in Vehari, Pakistan. Environmental geochemistry and health, 42, 4281–4297.

    CAS  Google Scholar 

  • Sayantan, D. (2017). Phosphate Amendments Moderate the Arsenate Accumulation and Its Subsequent Oxidative and Physiological Toxicities in Amaranthus viridis L. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 87, 1343–1353.

    CAS  Google Scholar 

  • Shehzad, M. T., Murtaza, G., Shafeeque, M., Sabir, M., Nawaz, H., & Khan, M. J. (2019). Assessment of trace elements in urban topsoils of Rawalpindi-Pakistan: a principal component analysis approach. Environmental Monitoring and Assessment, 191, 65.

    Google Scholar 

  • Shi, G., Lu, H., Liu, H., Lou, L., Zhang, P., Song, G., Zhou, H., Ma, H., 2020. Sulfate application decreases translocation of arsenic and cadmium within wheat (Triticum aestivum L.) plant. Science of The Total Environment 713, 136665.

  • Shishir, T., & Mahbub, N. (2019). Review on Bioremediation: A Tool to Resurrect the Polluted Rivers. Pollution, 5, 555–568.

    CAS  Google Scholar 

  • Singh, R., Parihar, P., & Prasad, S. M. (2018). Simultaneous exposure of sulphur and calcium hinder As toxicity: Up-regulation of growth, mineral nutrients uptake and antioxidants system. Ecotoxicology and environmental safety, 161, 318–331.

    CAS  Google Scholar 

  • Souri, Z., Karimi, N., & de Oliveira, L. M. (2018). Antioxidant enzymes responses in shoots of arsenic hyperaccumulator, Isatis cappadocica Desv., under interaction of arsenate and phosphate. Environmental Technology, 39, 1316–1327.

    CAS  Google Scholar 

  • Talukdar, T., & Talukdar, D. (2013). Response of antioxidative enzymes to arsenic-induced phytotoxicity in leaves of a medicinal daisy, Wedelia chinensis Merrill. J Nat Sci Biol Med, 4, 383–388.

    Google Scholar 

  • Xu, L., Wu, X., Wang, S., Yuan, Z., Xiao, F., Yang, M., & Jia, Y. (2016). Speciation change and redistribution of arsenic in soil under anaerobic microbial activities. Journal of Hazardous Materials, 301, 538–546.

    CAS  Google Scholar 

  • Xu, X., Wang, P., Zhang, J., Chen, C., Wang, Z., Kopittke, P. M., Kretzschmar, R., & Zhao, F.-J. (2019). Microbial sulfate reduction decreases arsenic mobilization in flooded paddy soils with high potential for microbial Fe reduction. Environmental Pollution, 251, 952–960.

    CAS  Google Scholar 

  • Yadav, G., Srivastava, P. K., Singh, V. P., & Prasad, S. M. (2014). Light intensity alters the extent of arsenic toxicity in Helianthus annuus L. seedlings. Biological trace element research, 158, 410–421.

    CAS  Google Scholar 

  • Zhang, J., Zhao, Q.-Z., Duan, G.-L., & Huang, Y.-C. (2011). Influence of sulphur on arsenic accumulation and metabolism in rice seedlings. Environmental and Experimental Botany, 72, 34–40.

    CAS  Google Scholar 

  • Zhang, Z., Moon, H. S., Myneni, S. C., & Jaffé, P. R. (2017). Effect of dissimilatory iron and sulfate reduction on arsenic dynamics in the wetland rhizosphere and its bioaccumulation in wetland plants (Scirpus actus). Journal of hazardous materials, 321, 382–389.

    CAS  Google Scholar 

  • Zhong, X., Chen, Z., Li, Y., Ding, K., Liu, W., Liu, Y., Yuan, Y., Zhang, M., Baker, A. J., & Yang, W. (2020). Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China. Journal of Hazardous Materials, 400, 123289.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Higher Education Commission (Project Nos. 6425/Punjab/NRPU/R&D/HEC/2016 and 6396/Punjab/NRPU/R&D/HEC/2016), Pakistan, for providing financial support. Drs Nabeel Khan Niazi and Irshad Bibi are thankful to the University of Agriculture Faisalabad. Dr Irshad Bibi acknowledges the support form COMSTEQ-TWAS research grant 2018 (18-268 RG/EAS/AS_C). Dr Nabeel Niazi is thankful to University of Southern Queensland, Australia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Irshad Bibi or Nabeel Khan Niazi.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 97 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natasha, Bibi, I., Hussain, K. et al. The potential of microbes and sulfate in reducing arsenic phytoaccumulation by maize (Zea mays L.) plants. Environ Geochem Health 43, 5037–5051 (2021). https://doi.org/10.1007/s10653-021-00902-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-00902-5

Keywords

Navigation