Skip to main content

Advertisement

Log in

Source and background threshold values of potentially toxic elements in soils by multivariate statistics and GIS-based mapping: a high density sampling survey in the Parauapebas basin, Brazilian Amazon

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

A high-density regional-scale soil geochemical survey comprising 727 samples (one sample per each 5 × 5 km grid) was carried out in the Parauapebas sub-basin of the Brazilian Amazonia, under the Itacaiúnas Basin Geochemical Mapping and Background Project. Samples were taken from two depths at each site: surface soil, 0–20 cm and deep soil, 30–50 cm. The ground and sieved (< 75 µm) fraction was digested using aqua regia and analyzed for 51 elements by inductively coupled plasma mass spectrometry (ICPMS). All data were used here, but the principal focus was on the potential toxic elements (PTEs) and Fe and Mn to evaluate the spatial distribution patterns and to establish their geochemical background concentrations in soils. Geochemical maps as well as principal component analysis (PCA) show that the distribution patterns of the elements are very similar between surface and deep soils. The PCA, applied on clr-transformed data, identified four major associations: Fe–Ti–V–Sc–Cu–Cr–Ni (Gp-1); Zr–Hf–U–Nb–Th–Al–P–Mo–Ga (Gp-2); K–Na–Ca–Mg–Ba–Rb–Sr (Gp-3); and La–Ce–Co–Mn–Y–Zn–Cd (Gp-4). Moreover, the distribution patterns of elements varied significantly among the three major geological domains. The whole data indicate a strong imprint of local geological setting in the geochemical associations and point to a dominant geogenic origin for the analyzed elements. Copper and Fe in Gp-1 were enriched in the Carajás basin and are associated with metavolcanic rocks and banded-iron formations, respectively. However, the spatial distribution of Cu is also highly influenced by two hydrothermal mineralized copper belts. Ni–Cr in Gp-1 are highly correlated and spatially associated with mafic and ultramafic units. The Gp-2 is partially composed of high field strength elements (Zr, Hf, Nb, U, Th) that could be linked to occurrences of A-type Neoarchean granites. The Gp-3 elements are mobile elements which are commonly found in feldspars and other rock-forming minerals being liberated by chemical weathering. The background threshold values (BTV) were estimated separately for surface and deep soils using different methods. The ‘75th percentile’, which commonly used for the estimation of the quality reference values (QRVs) following the Brazilian regulation, gave more restrictive or conservative (low) BTVs, while the ‘MMAD’ was more realistic to define high BTVs that can better represent the so-called mineralized/normal background. Compared with CONAMA Resolution (No. 420/2009), the conservative BTVs of most of the toxic elements were below the prevention limits (PV), except Cu, but when the high BTVs are considered, Cu, Co, Cr and Ni exceeded the PV limits. The degree of contamination (Cdeg), based on the conservative BTVs, indicates low contamination, except in the Carajás basin, which shows many anomalies and had high contamination mainly from Cu, Cr and Ni, but this is similar between surface and deep soils indicating that the observed high anomalies are strictly related to geogenic control. This is supported when the Cdeg is calculated using the high BTVs, which indicates low contamination. This suggests that the use of only conservative BTVs for the entire region might overestimate the significance of anthropogenic contamination; thus, we suggest the use of high BTVs for effective assessment of soil contamination in this region. The methodology and results of this study may help developing strategies for geochemical mapping in other Carajás soils or in other Amazonian soils with similar characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Acosta, J. A., Martínez-Martínez, S., Faz, A., & Arocena, J. (2011). Accumulations of major and trace elements in particle size fractions of soils on eight different parent materials. Geoderma,161(1–2), 30–42. https://doi.org/10.1016/j.geoderma.2010.12.001.

    Article  CAS  Google Scholar 

  • Aitchison, J. (1986). The statistical analysis of compositional data. London: Chapman and Hall.

    Book  Google Scholar 

  • Almeida Júnior, A. B., Nascimento, C. W. A., Biondi, C. M., Souza, A. P., & Barros, F. M. R. (2016). Background and reference values of metals in soils from Paraíba State. Brazil. Revista Brasileira de Ciência do Solo. https://doi.org/10.1590/18069657rbcs20150122.

    Article  Google Scholar 

  • Alvares, C. A., Stape, J. L., Sentelhas, P. C., de Moraes Gonçalves, J. L., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift,22(6), 711–728. https://doi.org/10.1127/0941-2948/2013/0507.

    Article  Google Scholar 

  • Ander, E. L., Johnson, C. C., Cave, M. R., Palumbo-Roe, B., Nathanail, C. P., & Lark, R. M. (2013). Methodology for the determination of normal background concentrations of contaminants in English soil. Science of the Total Environment,454–455, 604–618. https://doi.org/10.1016/j.scitotenv.2013.03.005.

    Article  CAS  Google Scholar 

  • Ashley, P., Craw, D., MacKenzie, D., Rombouts, M., & Reay, A. (2012). Mafic and ultramafic rocks, and platinum mineralisation potential, in the Longwood Range, Southland, New Zealand. New Zealand Journal of Geology and Geophysics,55(1), 3–19. https://doi.org/10.1080/00288306.2011.623302.

    Article  CAS  Google Scholar 

  • Berrow, M. L., & Reaves, G. A. (1984). Background levels of trace elements in soils. In Proceedings of the 1st international conference on environmental contamination. CEP Consultants. Edinburgh, Scotland (pp. 333–340).

  • Biondi, C. M., Nascimento, C. W. A., Fabrício Neta, A. B., & Ribeiro, M. R. (2011). Teores de Fe, Mn, Zn, Cu, Ni e Co em solos de referência de Pernambuco. Revista Brasileira de Ciência do Solo,35(3), 1057–1066.

    Article  CAS  Google Scholar 

  • Boim, A. G. F., Rodrigues, S. M., dos Santos-Araújo, S. N., Pereira, E., & Alleoni, L. R. F. (2018). Pedotransfer functions of potentially toxic elements in tropical soils cultivated with vegetable crops. Environmental Science and Pollution Research,25(13), 12702–12712. https://doi.org/10.1007/s11356-018-1348-0.

    Article  CAS  Google Scholar 

  • Burak, D. L., Fontes, M. P. F., Santos, N. T., Monteiro, L. V. S., Martins, E. S., & Becquer, T. (2010). Geochemistry and spatial distribution of heavy metals in Oxisols in a mineralized region of the Brazilian Central Plateau. Geoderma,160(2), 131–142. https://doi.org/10.1016/j.geoderma.2010.08.007.

    Article  CAS  Google Scholar 

  • Caires, S. M. (2009). Determination of natural heavy metals contents in soils of Minas Gerais State to help definition of background contents. Ph.D. dissertation, Universidade Federal de Viçosa, Viçosa (in Portuguese).

  • Caritat, P., Main, P. T., Grunsky, E. C., & Mann, A. W. (2017). Recognition of geochemical footprints of mineral systems in the regolith at regional to continental scales. Australian Journal of Earth Sciences,64(8), 1033–1043.

    Article  Google Scholar 

  • CETESB. (2005). Environmental Agency of the State of Sao Paulo. Report on Establishment of Guiding Values for Soils and Groundwater of the State of Sao Paulo, São Paulo, Brazil (p. 247) (in Portuguese).

  • Chiprés, J. A., Salinas, J. C., Castro-Larragoitia, J., & Monroy, M. G. (2008). Geochemical mapping of major and trace elements in soils from the Altiplano Potosino, Mexico: A multi-scale comparison. Geochemistry: Exploration, Environment, Analysis,8(3–4), 279–290. https://doi.org/10.1144/1467-7873/08-181.

    Article  Google Scholar 

  • CONAMA. (2009). National Council for the Environment, Brazil. Resolution n° 420/2009. http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=620. Accessed January 16, 2017 (in Portuguese).

  • Companhia de Pesquisa de Recursos Minerais (CPRM). (2002). Serviço Geológico do Brasil. Geologia e recursos minerais do Estado da Paraíba. Recife: Serviço Geológico do Brasil.

  • Dall’Agnol, R., da Cunha, I. R. V., Guimarães, F. V., de Oliveira, D. C., Teixeira, M. F. B., Feio, G. R. L., et al. (2017). Mineralogy, geochemistry, and petrology of Neoarchean ferroan to magnesian granites of Carajás Province, Amazonian Craton: The origin of hydrated granites associated with charnockites. Lithos,277, 3–32. https://doi.org/10.1016/j.lithos.2016.09.032.

    Article  CAS  Google Scholar 

  • Dall’Agnol, R., Teixeira, N. P., Rämö, O. T., Moura, C. A. V., Macambira, M. J. B., & de Oliveira, D. C. (2005). Petrogenesis of the Paleoproterozoic rapakivi A-type granites of the Archean Carajás metallogenic province, Brazil. Lithos,80(1–4), 101–129. https://doi.org/10.1016/j.lithos.2004.03.058.

    Article  CAS  Google Scholar 

  • de Moraes, B. C., da Costa, J. M. N., da Costa, A. C. L., & Costa, M. H. (2005). Variação espacial e temporal da precipitação no Estado do Pará. Acta Amazonica,35(2), 207–214. https://doi.org/10.1590/S0044-59672005000200010.

    Article  Google Scholar 

  • De Vivo, B., Lima, A., Albanese, S., & Cicchella, D. (2003). Atlante geochimico-ambientale della regione Campania (Geochemical Environmental Atlas of Campania Region). Napoli: De Frede Editore.

    Google Scholar 

  • De Vivo, B., Lima, A., & Siegel, F. R. (2004). Geochimica ambientale. Metalli potenzialmente tossici. Naples: Liguori Editore.

    Google Scholar 

  • Deschenes, S., Setton, E., Demers, P. A., & Keller, P. C. (2013). Exploring the relationship between surface and subsurface soil concentrations of heavy metals using geographically weighted regression. E3S Web of Conferences,1, 35007. https://doi.org/10.1051/e3sconf/20130135007.

    Article  CAS  Google Scholar 

  • Fabrício Neta, A. B. (2012). Teores naturais de metais pesados em solos da ilha de Fernando de Noronha [Dissertation in Portuguese]. Recife: Universidade Federal Rural de Pernambuco.

    Google Scholar 

  • Fabrício Neta, A. B., do Nascimento, C. W. A., Biondi, C. M., van Straaten, P., & Bittar, S. M. B. (2018). Natural concentrations and reference values for trace elements in soils of a tropical volcanic archipelago. Environmental Geochemistry and Health,40(1), 163–173. https://doi.org/10.1007/s10653-016-9890-5.

    Article  CAS  Google Scholar 

  • Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution,114, 313–324.

    Article  CAS  Google Scholar 

  • Fadigas, F. S., Sobrinho, N. M. B. A., Anjos, L. H. C., & Mazur, N. (2010). Background contents of some trace elements in weathered soils from the Brazilian Northern region. Scientia Agricola,67, 53–59.

    Article  CAS  Google Scholar 

  • Feio, G. R. L., Dall’Agnol, R., Dantas, E. L., Macambira, M. J. B., Gomes, A. C. B., Sardinha, A. S., et al. (2012). Geochemistry, geochronology, and origin of the Neoarchean Planalto Granite suite, Carajás, Amazonian craton: A-type or hydrated charnockitic granites? Lithos,151, 57–73. https://doi.org/10.1016/j.lithos.2012.02.020.

    Article  CAS  Google Scholar 

  • Feio, G. R. L., Dall’Agnol, R., Dantas, E. L., Macambira, M. J. B., Santos, J. O. S., Althoff, F. J., et al. (2013). Archean granitoid magmatism in the Canaã dos Carajás area: Implications for crustal evolution of the Carajás province, Amazonian craton, Brazil. Precambrian Research,227, 157–185. https://doi.org/10.1016/j.precamres.2012.04.007.

    Article  CAS  Google Scholar 

  • Fernandes, A. R., de Souza, E. S., de Souza Braz, A. M., Birani, S. M., & Alleoni, L. R. F. (2018). Quality reference values and background concentrations of potentially toxic elements in soils from the Eastern Amazon, Brazil. Journal of Geochemical Exploration,90, 453–463.

    Article  Google Scholar 

  • Filzmoser, P., Hron, K., & Reimann, C. (2009). Principal component analysis for compositional data with outliers. Environmetrics,20, 621–632.

    Article  Google Scholar 

  • Fritsch, E., Montes-Lauar, C. R., Boulet, R., Melfi, A. J., Balan, E., & Magat, P. (2002). Lateritic and redoximorphic features in a faulted landscape near Manaus, Brazil. European Journal of Soil Science,53(2), 203–217. https://doi.org/10.1046/j.1351-0754.2002.00448.x.

    Article  CAS  Google Scholar 

  • Galuszka, A. (2007). Different approaches in using and understanding the term “Geochemical Background”—Practical implications for environmental studies. Polish Journal of Environmental Studies,16, 389–395.

    Google Scholar 

  • Gregorauskienė, V., & Kadūnas, V. (2006). Vertical distribution patterns of trace and major elements within soil profile in Lithuania. Geological Quarterly,50(2), 229–237.

    Google Scholar 

  • Grunsky, E. C. (2010). The interpretation of geochemical survey data. Geochemistry: Exploration, Environment and Analysis,10, 27–74.

    CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research,14, 975–1001.

    Article  Google Scholar 

  • Hamon, R. E., McLaughlin, M. J., Gilkes, R. J., Rate, A. W., Zarcinas, B., Robertson, A., et al. (2004). Geochemical indices allow estimation of heavy metal background concentrations in soils. Global Biogeochemical Cycles. https://doi.org/10.1029/2003gb002063.

    Article  Google Scholar 

  • Jiao, X., Teng, Y., Zhan, Y., Wu, J., & Lin, X. (2015). Soil heavy metal pollution and risk assessment in Shenyang Industrial District, Northeast China. PLoS ONE,10(5), e0127736. https://doi.org/10.1371/journal.pone.0127736.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. Berlin: Springer. https://doi.org/10.1007/978-3-540-32714-1.

    Book  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soils and plants. Boca Raton: CRC Press.

    Google Scholar 

  • Kelepertzis, E., Argyraki, A., & Daftsis, E. (2012). Geochemical signature of surface water and stream sediments of a mineralized drainage basin at NE Chalkidiki, Greece: A pre-mining survey. Journal of Geochemical Exploration,114, 70–81. https://doi.org/10.1016/j.gexplo.2011.12.006.

    Article  CAS  Google Scholar 

  • Lancianese, V., & Dinelli, E. (2015). Different spatial methods in regional geochemical mapping at high density sampling: An application on stream sediment of Romagna Apennines, Northern Italy. Journal of Geochemical Exploration,154, 143–155. https://doi.org/10.1016/j.gexplo.2014.12.014.

    Article  CAS  Google Scholar 

  • Marandi, A., & Karro, E. (2008). Natural background levels and threshold values of monitored parameters in the Cambrian–Vendian groundwater body, Estonia. Environmental Geology,54(6), 1217–1225. https://doi.org/10.1007/s00254-007-0904-6.

    Article  CAS  Google Scholar 

  • Maritz, H., Cloete, H. C. C. C., & Elsenbroek, J. H. (2010). Analysis of high density regional geochemical soil samples at the council for geoscience (South Africa): The importance of quality control measures. Geostandards and Geoanalytical Research,34(3), 265–273. https://doi.org/10.1111/j.1751-908X.2010.00078.x.

    Article  CAS  Google Scholar 

  • Martinez-Lladó, X., Vilà, M., Martí, V., Rovira, M., Domènech, J. A., & de Pablo, J. (2008). Trace element distribution in topsoils in Catalonia: Background and reference values and relationship with regional geology. Environmental Engineering Science,25(6), 863–878. https://doi.org/10.1089/ees.2007.0139.

    Article  CAS  Google Scholar 

  • Matschullat, J., Ottenstein, R., & Reimann, C. (2000). Geochemical background—Can we calculate it? Environmental Geology,39(9), 990–1000. https://doi.org/10.1007/s002549900084.

    Article  CAS  Google Scholar 

  • Mimba, M. E., Ohba, T., Nguemhe Fils, S. C., Nforba, M. T., Numanami, N., Bafon, T. G., et al. (2018). Regional geochemical baseline concentration of potentially toxic trace metals in the mineralized Lom Basin, East Cameroon: A tool for contamination assessment. Geochemical Transactions,19(1), 11. https://doi.org/10.1186/s12932-018-0056-5.

    Article  CAS  Google Scholar 

  • Monteiro, L. V. S., Xavier, R. P., Hitzman, M. W., Juliani, C., de Souza Filho, C. R., & Carvalho, E. R. (2008). Mineral chemistry of ore and hydrothermal alteration at the Sossego iron oxide–copper–gold deposit, Carajás Mineral Province, Brazil. Ore Geology Reviews,34(3), 317–336. https://doi.org/10.1016/j.oregeorev.2008.01.003.

    Article  Google Scholar 

  • Moreto, C. P. N., Monteiro, L. V. S., Xavier, R. P., Creaser, R. A., DuFrane, S. A., Melo, G. H. C., et al. (2015). Timing of multiple hydrothermal events in the iron oxide–copper–gold deposits of the Southern Copper Belt, Carajás Province, Brazil. Mineralium Deposita,50, 517–546.

    Article  CAS  Google Scholar 

  • Morton-Bermea, O., Hernández-Álvarez, E., González-Hernández, G., Romero, F., Lozano, R., & Beramendi-Orosco, L. E. (2009). Assessment of heavy metal pollution in urban topsoils from the metropolitan area of Mexico City. Journal of Geochemical Exploration,101(3), 218–224. https://doi.org/10.1016/j.gexplo.2008.07.002.

    Article  CAS  Google Scholar 

  • Nakić, Z., Posavec, K., & Bačani, A. (2007). A visual basic spreadsheet macro for geochemical background analysis. Ground Water,45, 642–647.

    Article  Google Scholar 

  • Nascimento, C. W. A., Lima, L. H. V., Silva, F. L. S., Biondi, C. M., & Campos, M. C. C. (2018). Natural concentrations and refernce values of heavy metals in sedimentary soils in the Brazilian Amazon. Environmental Monitoring and Assessment, 190, 606. https://doi.org/10.1007/s10661-018-6989-4.

    Article  CAS  Google Scholar 

  • Ohta, A., Imai, N., Terashima, S., & Tachibana, Y. (2011). Regional geochemical mapping in eastern Japan including the nation’s capital, Tokyo. Geochemistry: Exploration, Environment, Analysis,11(3), 211–223. https://doi.org/10.1144/1467-7873/10-042.

    Article  CAS  Google Scholar 

  • Oze, C., Fendorf, S., Bird, D. K., & Coleman, R. G. (2004). Chromium geochemistry in serpentinized ultramafic rocks and serpentine soils from the Franciscan complex of California. American Journal of Science,304(1), 67–101. https://doi.org/10.2475/ajs.304.1.67.

    Article  CAS  Google Scholar 

  • Palumbo, B., Angelone, M., Bellanca, A., Dazzi, C., Hauser, S., Neri, R., et al. (2000). Influence of inheritance and pedogenesis on heavy metal distribution in soils of Sicily, Italy. Geoderma,95(3–4), 247–266. https://doi.org/10.1016/S0016-7061(99)00090-7.

    Article  CAS  Google Scholar 

  • Pandolfo, C. M., Ceretta, C. A., Massignam, A. M., da Veiga, M., & Moreira, I. C. L. (2008). Análise ambiental do uso de fontes de nutrientes associadas a sistemas de manejo do solo. Revista Brasileira de Engenharia Agrícola e Ambiental,12(5), 512–519. https://doi.org/10.1590/S1415-43662008000500012.

    Article  Google Scholar 

  • Paye, H. S., de Mello, J. W. V., Abrahão, W. A. P., Fernandes Filho, E. I., Dias, L. C. P., Castro, M. L. O., et al. (2010). Valores de referência de qualidade para metais pesados em solos no Estado do Espírito Santo. Revista Brasileira de Ciência do Solo,34(6), 2041–2051. https://doi.org/10.1590/s0100-06832010000600028.

    Article  Google Scholar 

  • Pontes, P. R. M., Cavalcante, R. B. L., Sahoo, P. K., Silva, R., Jr., Silva, M. S., Dall’Agnol, R., et al. (2019). The role of protected and deforested areas in the hydrological processes of Itacaiúnas River Basin, eastern Amazonia. Journal of Enviromental Mangament,235, 489–499.

    Google Scholar 

  • Preston, W., Nascimento, C. W. A., Biondi, C. M., Souza Junior, V. S., Silva, W. R., & Ferreira, H. A. (2014). Quality reference values for heavy metals in soils of Rio Grande do Norte, Brazil. Revista Brasileira de Ciência do Solo,38, 1028–1037. https://doi.org/10.1590/S0100-06832014000300035. (in Portuguese with English abstract).

    Article  CAS  Google Scholar 

  • R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org. Accessed 21 Jan 2018.

  • Reimann, C., & de Caritat, P. (2017). Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil. Science of the Total Environment,578, 633–648. https://doi.org/10.1016/j.scitotenv.2016.11.010.

    Article  CAS  Google Scholar 

  • Reimann, C., Fabian, K., Birke, M., Filzmoser, P., Demetriades, A., Négrel, P., et al. (2018). GEMAS: Establishing geochemical background and threshold for 53 chemical elements in European agricultural soil. Applied Geochemistry,88, 302–318. https://doi.org/10.1016/j.apgeochem.2017.01.021.

    Article  CAS  Google Scholar 

  • Reimann, C., Filzmoser, P., & Garrett, R. (2002). Factor analysis applied to regional geochemical data: Problems and possibilities. Applied Geochemistry,17(3), 185–206. https://doi.org/10.1016/S0883-2927(01)00066-X.

    Article  CAS  Google Scholar 

  • Reimann, C., Filzmoser, P., & Garrett, R. G. (2005). Background and threshold: Critical comparison of methods of determination. Science of the Total Environment,346, 1–16.

    Article  CAS  Google Scholar 

  • Reimann, C., & Garrett, R. G. (2005). Geochemical background—Concept and reality. Science of the Total Environment,350(1–3), 12–27. https://doi.org/10.1016/j.scitotenv.2005.01.047.

    Article  CAS  Google Scholar 

  • Sahoo, P. K., Guimarães, J. T. F., Souza-Filho, P. W. M., Powell, M. A., Silva, M. S., Moraes, A. M., et al. (2019). Statistical analysis of lake sediment geochemical data for understanding surface geological factors and processes: An example from Amazonian upland lakes, Brazil. CATENA,175, 47–62.

    Article  CAS  Google Scholar 

  • Salminen, R., & Tarvainen, T. (1997). The problem of defining geochemical baselines: A case study of selected elements and geological materials in Finland. Journal of Geochemical Exploration,60(1), 91–98. https://doi.org/10.1016/s0375-6742(97)00028-9.

    Article  CAS  Google Scholar 

  • Salomão, G. N., Dall’Agnol, R., Sahoo, P. K., Júnior, J. S. F., Silva, M. S., Souza Filho, P. W., et al. (2018). Geochemical distribution and thresholds values determination of heavy metals in stream water in the sub-basins of Vermelho and Sororó rivers, Itacaiúnas River watershed, Eastern Amazon, Brazil. Geochimica Brasiliensis, 32, 179–197.

    Article  Google Scholar 

  • Santos, S. N., & Alleoni, L. R. F. (2013). Reference values for heavy metals in soils of Brazilian agricultural frontier in Southwestern Amazônia. Environmental Monitoring and Assessment,185, 5737–5748.

    Article  CAS  Google Scholar 

  • Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation coefficients: Appropriate use and interpretation. Anesthesia and Analgesia,126, 1763–1768. https://doi.org/10.1213/ANE.0000000000002864.

    Article  Google Scholar 

  • Silva, Y. J., Nascimento, C. W., Cantalice, J. R., da Silva, Y. J., & Cruz, C. M. (2015). Watershed-scale assessment of background concentrations and guidance values for heavy metals in soils from a semiarid and coastal zone of Brazil. Environmental Monitoring and Assessment, 187(9), 558. https://doi.org/10.1007/s10661-015-4782-1.

    Article  CAS  Google Scholar 

  • Souza, J. J. L. L., Fontes, M. P. F., Gilkes, R., da Costa, L. M., & de Oliveira, T. S. (2019). Geochemical signature of Amazon tropical rainforest soils. Revista Brasileira de Ciencia do Solo,42, 1–18. https://doi.org/10.1590/18069657rbcs20170192.

    Article  Google Scholar 

  • Souza-Filho, P. W. M., Souza, E. B., Silva Júnior, R. O., Nascimento, W. R., Jr., Mendonça, B. R. V., Guimarães, J. T. F., et al. (2016). Four decades of land-cover, land-use and hydroclimatology changes in the Itacaiúnas River watershed, southeastern Amazon. Journal of Environmental Management,167, 175–184. https://doi.org/10.1016/j.jenvman.2015.11.039.

    Article  Google Scholar 

  • Teh, T., Norulaini, N. A. R., Shahadat, M., Wong, Y., & Mohd Omar, A. K. (2016). Risk assessment of metal contamination in soil and groundwater in Asia: A review of recent trends as well as existing environmental laws and regulations. Pedosphere,26(4), 431–450. https://doi.org/10.1016/S1002-0160(15)60055-8.

    Article  Google Scholar 

  • Teixeira, M. F. B., Dall’Agnol, R., Santos, J. O. S., de Sousa, L. A. M., & Lafon, J.-M. (2017). Geochemistry, geochronology and Nd isotopes of the Gogó da Onça Granite: A new Paleoproterozoic A-type granite of Carajás Province, Brazil. Journal of South American Earth Sciences,80, 47–65. https://doi.org/10.1016/j.jsames.2017.09.017.

    Article  CAS  Google Scholar 

  • Thornton, I., Farago, M. E., Thums, C. R., Parrish, R. R., McGill, R. A. R., Breward, N., et al. (2008). Urban geochemistry: Research strategies to assist risk assessment and remediation of brownfield sites in urban areas. Environmental Geochemistry and Health,30(6), 565–576. https://doi.org/10.1007/s10653-008-9182-9.

    Article  CAS  Google Scholar 

  • Towett, E. K., Shepherd, K. D., Tondoh, J. E., Winowiecki, L. A., Lulseged, T., Nyambura, M., et al. (2015). Total elemental composition of soils in Sub-Saharan Africa and relationship with soil forming factors. Geoderma Regional,5, 157–168. https://doi.org/10.1016/j.geodrs.2015.06.002.

    Article  Google Scholar 

  • Vasquez, L. V., Rosa-Costa, L. R., Silva, C. G., Ricci, P. F., Barbosa, J. O., & Klein, E. L. (2008). Geologia e recursos minerais do estado do Pará: Sistema de Informações Geográficas – SIG: Texto explicativo dos mapas geológico e tectônico e de recursos minerais do estado do Pará. http://rigeo.cprm.gov.br/jspui/handle/doc/10443.

  • Wang, Z., Hong, C., Xing, Y., Wang, K., Li, Y., Feng, L., et al. (2018). Spatial distribution and sources of heavy metals in natural pasture soil around copper-molybdenum mine in Northeast China. Ecotoxicology and Environmental Safety,154, 329–336. https://doi.org/10.1016/j.ecoenv.2018.02.048.

    Article  CAS  Google Scholar 

  • Xie, X., Wang, X., Zhang, Q., Zhou, G., Cheng, H., Liu, D., et al. (2008). Multi-scale geochemical mapping in China. Geochemistry: Exploration, Environment, Analysis,8(3–4), 333–341. https://doi.org/10.1144/1467-7873/08-184.

    Article  CAS  Google Scholar 

  • Yamamoto, K., Tanaka, T., Minami, M., Mimura, K., Asahara, Y., Yoshida, H., et al. (2007). Geochemical mapping in Aichi prefecture, Japan: Its significance as a useful dataset for geological mapping. Applied Geochemistry,22(2), 306–319. https://doi.org/10.1016/j.apgeochem.2006.09.011.

    Article  CAS  Google Scholar 

  • Zuo, R. (2011). Identifying geochemical anomalies associated with Cu and Pb–Zn skarn mineralization using principal component analysis and spectrum–area fractal modeling in the Gangdese Belt, Tibet (China). Journal of Geochemical Exploration,111(1–2), 13–22. https://doi.org/10.1016/j.gexplo.2011.06.012.

    Article  CAS  Google Scholar 

  • Zuo, R., Cheng, Q., Agterberg, F. P., & Xia, Q. (2009). Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, western China. Journal of Geochemical Exploration,101(3), 225–235. https://doi.org/10.1016/j.gexplo.2008.08.003.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is part of the Itacaiúnas Geochemical Mapping and Background Project, ItacGMBP, currently being undertaken at Instituto Tecnológico Vale (ITV), Belém, Brazil. This was supported by Vale (GABAN-DIFN); Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) [DTI scholarship to GNS (Proc. 380.418/2018-5); Grants to RD (proc. 306108/2014-3; Proc. 443247/2015-3); RSA 305.392/2014-0]; and CAPES (scholarship to GCM, Proc. 88887.160998/2017-00). The authors acknowledge two anonymous reviewers for their constructive comments and insights and Marcondes Lima da Costa, Luiz Roberto Guimarães Guilherme, Otavio Augusto Boni Licht, José Francisco da Fonseca Ramos e José Francisco Bêrredo for their scientific collaboration with the Background project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prafulla Kumar Sahoo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 957 kb)

Supplementary material 2 (XLSX 326 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, P.K., Dall’Agnol, R., Salomão, G.N. et al. Source and background threshold values of potentially toxic elements in soils by multivariate statistics and GIS-based mapping: a high density sampling survey in the Parauapebas basin, Brazilian Amazon. Environ Geochem Health 42, 255–282 (2020). https://doi.org/10.1007/s10653-019-00345-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-019-00345-z

Keywords

Navigation