Skip to main content

Advertisement

Log in

Bioaccumulation of arsenic and fluoride in vegetables from growing media: health risk assessment among different age groups

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The current study was conducted to evaluate the arsenic (As) and fluoride (F) concentrations in growing media (stored rainwater and soil), of district Tharparkar, Pakistan. The bioaccumulation/transportation of As and F from growing media to different types of vegetables (wild cucumis, Indian squish and cluster bean) was evaluated. Total concentrations of As and F in stored rainwater samples were observed up to 585 μg/L and 32.4 mg/L, respectively, exceeding many folds higher than WHO provisional guideline values. The As and F contents in soil samples of nine agricultural sites were found in the range of 121–254 mg/kg and 115–478 mg/kg, respectively. The highest contents of As and F were observed in wild cucumis as compared to Indian squish and cluster bean (p < 0.05), grown in the same agricultural field. The bioaccumulation factors of As and F were to be > 4.00, indicating the high rate of transportation of As and F from growing media to vegetables. A significant positive correlation of As and F in vegetables with their concentrations in soil and water was observed (r > 0.60 with p < 0.05). The risk assessment elucidated that the population of different age group consuming local vegetables and drinking water contaminated with As and F may have adverse health effects.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abedin, M. J., Cresser, M. S., Meharg, A. A., Feldmann, J., & Cotter-Howells, J. (2002). Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environmental Science and Technology, 36(5), 962–968.

    Article  CAS  Google Scholar 

  • Ando, M., Tadano, M., Asanuma, S., Tamura, K., Matsushima, S., Watanabe, T., et al. (1998). Health effects of indoor fluoride pollution from coal burning in China. Environmental Health Perspectives, 106(5), 239.

    Article  CAS  Google Scholar 

  • Ayoob, S., & Gupta, A. K. (2006). Fluoride in drinking water: a review on the status and stress effects. Critical Reviews in Environmental Science and Technology, 36(6), 433–487.

    Article  CAS  Google Scholar 

  • Bae, M., Watanabe, C., Inaoka, T., Sekiyama, M., Sudo, N., Bokul, M. H., et al. (2002). Arsenic in cooked rice in Bangladesh. The Lancet, 360(9348), 1839–1840.

    Article  CAS  Google Scholar 

  • Baig, J. A., & Kazi, T. G. (2012). Translocation of arsenic contents in vegetables from growing media of contaminated areas. Ecotoxicology and Environmental Safety, 75, 27–32.

    Article  CAS  Google Scholar 

  • Baig, J. A., Kazi, T. G., Arain, M. B., Afridi, H. I., Kandhro, G. A., Sarfraz, R. A., et al. (2009). Evaluation of arsenic and other physico-chemical parameters of surface and ground water of Jamshoro, Pakistan. Journal of Hazardous Materials, 166(2–3), 662–669.

    Article  CAS  Google Scholar 

  • Baig, J. A., Kazi, T. G., Shah, A. Q., Afridi, H. I., Kandhro, G. A., Khan, S., et al. (2011). Evaluation of arsenic levels in grain crops samples, irrigated by tube well and canal water. Food and Chemical Toxicology, 49(1), 265–270.

    Article  CAS  Google Scholar 

  • Berg, M., Stengel, C., Trang, P. T. K., Hung Viet, P., Sampson, M. L., Leng, M., et al. (2007). Magnitude of arsenic pollution in the Mekong and Red River Deltas—Cambodia and Vietnam. Science of the Total Environment, 372(2), 413–425. https://doi.org/10.1016/j.scitotenv.2006.09.010.

    Article  CAS  Google Scholar 

  • Bhattacharya, P., Claesson, M., Bundschuh, J., Sracek, O., Fagerberg, J., Jacks, G., et al. (2006). Distribution and mobility of arsenic in the Rio Dulce alluvial aquifers in Santiago del Estero Province, Argentina. Science of the Total Environment, 358(1–3), 97–120.

    Article  CAS  Google Scholar 

  • Bhattacharya, P., Welch, A. H., Stollenwerk, K. G., McLaughlin, M., Bundschuh, J., & Panaullah, G. (2007). Arsenic in the environment: Biology and chemistry. Science of the Total Environment, 379, 109–120.

    Article  CAS  Google Scholar 

  • Börzsönyi, M., Bereczky, A., Rudnai, P., Csanady, M., & Horvath, A. (1992). Epidemiological studies on human subjects exposed to arsenic in drinking water in Southeast Hungary. Archives of Toxicology, 66(1), 77–78. https://doi.org/10.1007/bf02307274.

    Article  Google Scholar 

  • Brahman, K. D., Kazi, T. G., Afridi, H. I., Naseem, S., Arain, S. S., & Ullah, N. (2013a). Evaluation of high levels of fluoride, arsenic species and other physicochemical parameters in underground water of two sub districts of Tharparkar, Pakistan: A multivariate study. Water Research, 47(3), 1005–1020.

    Article  CAS  Google Scholar 

  • Brahman, K. D., Kazi, T. G., Afridi, H. I., Naseem, S., Arain, S. S., Wadhwa, S. K., et al. (2013b). Simultaneously evaluate the toxic levels of fluoride and arsenic species in underground water of Tharparkar and possible contaminant sources: A multivariate study. Ecotoxicology and Environmental Safety, 89, 95–107.

    Article  CAS  Google Scholar 

  • Brahman, K. D., Kazi, T. G., Afridi, H. I., Rafique, T., Baig, J. A., Arain, S. S., et al. (2014). Evaluation of fresh and stored rainwater quality in fluoride and arsenic endemic area of Thar Desert, Pakistan. Environmental Monitoring and Assessment, 186(12), 8611–8628.

    Article  CAS  Google Scholar 

  • Buchhamer, E. E., Blanes, P. S., Osicka, R. M., & Giménez, M. C. (2012). Environmental risk assessment of arsenic and fluoride in the Chaco Province, Argentina. Journal of Toxicology and Environmental Health, Part A, 75, 1437–1450.

    Article  CAS  Google Scholar 

  • Bundschuh, J., et al. (2004). Groundwater arsenic in the Chaco-Pampean plain, Argentina: case study from Robles county, Santiago del Estero province. Applied Geochemistry, 19(2), 231–243.

    Article  CAS  Google Scholar 

  • Bustingorri, C., & Lavado, R. S. (2014). Soybean as affected by high concentrations of arsenic and fluoride in irrigation water in controlled conditions. Agricultural Water Management, 144, 134–139.

    Article  Google Scholar 

  • Carrillo-Rivera, J., Cardona, A., & Edmunds, W. (2002a). Use of abstraction regime and knowledge of hydrogeological conditions to control high-fluoride concentration in abstracted groundwater: San Luis Potosı basin, Mexico. Journal of hydrology, 261(1–4), 24–47.

    Article  CAS  Google Scholar 

  • Carrillo-Rivera, J. J., Cardona, A., & Edmunds, W. M. (2002b). Use of abstraction regime and knowledge of hydrogeological conditions to control high-fluoride concentration in abstracted groundwater: San Luis Potosí basin, Mexico. Journal of Hydrology, 261(1), 24–47. https://doi.org/10.1016/S0022-1694(01)00566-2.

    Article  CAS  Google Scholar 

  • Das, K., Dey, U., & Mondal, N. K. (2016). Deleneation of groundwater quality in the presence of fluoride in selected villages of Simlapal block, Bankura district, West Bengal, India. Sustainable Water Resources Management, 2(4), 439–451.

    Article  Google Scholar 

  • Das, H., Mitra, A. K., Sengupta, P., Hossain, A., Islam, F., & Rabbani, G. (2004). Arsenic concentrations in rice, vegetables, and fish in Bangladesh: A preliminary study. Environment International, 30(3), 383–387.

    Article  CAS  Google Scholar 

  • Dey, R. K., Swain, S. K., Mishra, S., Sharma, P., Patnaik, T., et al. (2012). Hydrogeochemical processes controlling the high fluoride concentration in groundwater: A case study at the Boden block area, Orissa, India. Environmental Monitoring and Assessment, 184(5), 3279–3291.

    Article  CAS  Google Scholar 

  • Duxbury, J., Mayer, A., Lauren, J., & Hassan, N. (2003). Food chain aspects of arsenic contamination in Bangladesh: effects on quality and productivity of rice. Journal of Environmental Science and Health, Part A, 38(1), 61–69.

    Article  CAS  Google Scholar 

  • Fantong, W. Y., Satake, H., Ayonghe, S. N., Suh, E. C., Adelana, S. M. A., Fantong, E. B. S., et al. (2010). Geochemical provenance and spatial distribution of fluoride in groundwater of Mayo Tsanaga River Basin, Far North Region, Cameroon: Implications for incidence of fluorosis and optimal consumption dose. Environmental Geochemistry and Health, 32(2), 147–163. https://doi.org/10.1007/s10653-009-9271-4.

    Article  CAS  Google Scholar 

  • Fantong, W. Y., Takounjou, A. F., Fantong, E. B., Banseka, H. S., Gwanfogbe, C. D., Ayonghe, S. N., et al. (2013). Increased risk of fluorosis and methemoglobinemia diseases from climate change: Evidence from groundwater quality in Mayo Tsanaga River Basin, Cameroon. J. Cam. Acad. Sci, 11(1), 55–60.

    Google Scholar 

  • Farooqi, A., Masuda, H., & Firdous, N. (2007). Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur districts, Punjab, Pakistan and possible contaminant sources. Environmental Pollution, 145(3), 839–849.

    Article  CAS  Google Scholar 

  • Ferreccio, C., & Sancha, A. M. (2006). Arsenic exposure and its impact on health in Chile. Journal of Health, Population and Nutrition, 164-175.

  • Finkelman, R. B., Orem, W., Castranova, V., Tatu, C. A., Belkin, H. E., Zheng, B., et al. (2002). Health impacts of coal and coal use: Possible solutions. International Journal of Coal Geology, 50(1–4), 425–443.

    Article  CAS  Google Scholar 

  • Gao, H.-J., Zhao, Q., Zhang, X.-C., Wan, X.-C., & Mao, J.-D. (2014). Localization of fluoride and aluminum in subcellular fractions of tea leaves and roots. Journal of Agricultural and Food Chemistry, 62(10), 2313–2319.

    Article  CAS  Google Scholar 

  • Gómez, M. L., Blarasin, M. T., & Martínez, D. E. (2009). Arsenic and fluoride in a loess aquifer in the central area of Argentina. Environmental Geology, 57, 143–155.

    Article  CAS  Google Scholar 

  • González-Horta, C., et al. (2015). A concurrent exposure to arsenic and fluoride from drinking water in Chihuahua, Mexico. International Journal of Environmental Research and Public Health, 12(5), 4587–4601.

    Article  CAS  Google Scholar 

  • Guo, H., & Wang, Y. (2005). Geochemical characteristics of shallow groundwater in Datong basin, northwestern China. Journal of Geochemical Exploration, 87(3), 109–120.

    Article  CAS  Google Scholar 

  • Guo, X., Liu, Z., Huang, C., & You, L. (2006). Levels of arsenic in drinking-water and cutaneous lesions in Inner Mongolia. Journal of Health, Population and Nutrition, 24(2), 214–220.

    Google Scholar 

  • Irigoyen-Camacho, M., Pérez, A. G., González, A. M., & Alvarez, R. H. (2016). Nutritional status and dental fluorosis among schoolchildren in communities with different drinking water fluoride concentrations in a central region in Mexico. Science of the Total Environment, 541, 512–519.

    Article  CAS  Google Scholar 

  • Jamali, M., et al. (2008). Use of sewage sludge after liming as fertilizer for maize growth. Pedosphere, 18(2), 203–213.

    Article  CAS  Google Scholar 

  • Jha, S., Nayak, A., & Sharma, Y. (2011). Site specific toxicological risk from fluoride exposure through ingestion of vegetables and cereal crops in Unnao district, Uttar Pradesh, India. Ecotoxicology and Environmental Safety, 74(4), 940–946.

    Article  CAS  Google Scholar 

  • Jha, S., Singh, R., Damodaran, T., Mishra, V., Sharma, D., & Rai, D. (2013). Fluoride in groundwater: Toxicological exposure and remedies. Journal of Toxicology and Environmental Health, Part B, 16(1), 52–66.

    Article  CAS  Google Scholar 

  • Juhasz, A. L., Smith, E., Weber, J., Rees, M., Rofe, A., Kuchel, T., et al. (2006). In vivo assessment of arsenic bioavailability in rice and its significance for human health risk assessment. Environmental Health Perspectives, 114(12), 1826.

    Article  CAS  Google Scholar 

  • Kazi, T. G., Arain, M. B., Baig, J. A., Jamali, M. K., Afridi, H. I., Jalbani, N., et al. (2009). The correlation of arsenic levels in drinking water with the biological samples of skin disorders. Science of the Total Environment, 407(3), 1019–1026.

    CAS  Google Scholar 

  • Khan, A., Khan, S., Khan, M. A., Qamar, Z., & Waqas, M. (2015). The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: A review. Environmental Science and Pollution Research, 22(18), 13772–13799.

    Article  CAS  Google Scholar 

  • Khandare, A. L., & Rao, G. S. (2006). Uptake of fluoride, aluminum and molybdenum by some vegetables from irrigation water. Journal of Human Ecology, 19(4), 283–288.

    Article  Google Scholar 

  • Kurzius-Spencer, M., Harris, R. B., Hartz, V., Roberge, J., Hsu, C.-H., O’rourke, M. K., et al. (2016). Relation of dietary inorganic arsenic to serum matrix metalloproteinase-9 (MMP-9) at different threshold concentrations of tap water arsenic. Journal of Exposure Science & Environmental Epidemiology, 26(5), 445.

    Article  CAS  Google Scholar 

  • Lu, Y., Sun, Z., Wu, L., Wang, X., Lu, W., & Liu, S. (2000). Effect of high-fluoride water on intelligence in children. Fluoride, 33(2), 74–78.

    CAS  Google Scholar 

  • Madeira, A., De Varennes, A., Abreu, M., Esteves, C., & Magalhães, M. (2012). Tomato and parsley growth, arsenic uptake and translocation in a contaminated amended soil. Journal of Geochemical Exploration, 123, 114–121.

    Article  CAS  Google Scholar 

  • Martínez-Acuña, M. I., Mercado-Reyes, M., Alegría-Torres, J. A., & Mejía-Saavedra, J. J. (2016). Preliminary human health risk assessment of arsenic and fluoride in tap water from Zacatecas, México. Environmental Monitoring and Assessment, 188(8), 476.

    Article  CAS  Google Scholar 

  • Milton, A. H., Smith, W., Rahman, B., Hasan, Z., Kulsum, U., Dear, K., et al. (2005). Chronic arsenic exposure and adverse pregnancy outcomes in Bangladesh. Epidemiology, 16(1), 82–86.

    Article  Google Scholar 

  • Mukherjee, S. C., Saha, K. C., Pati, S., Dutta, R. N., Rahman, M. M., Sengupta, M. K., et al. (2005). Murshidabad—one of the nine groundwater arsenic-affected districts of West Bengal, India. Part II: Dermatological, neurological, and obstetric findings. Clinical Toxicology, 43(7), 835–848.

    Article  CAS  Google Scholar 

  • Naseem, S., Rafique, T., Bashir, E., Bhanger, M. I., Laghari, A., & Usmani, T. H. (2010). Lithological influences on occurrence of high-fluoride groundwater in Nagar Parkar area, Thar Desert, Pakistan. Chemosphere, 78(11), 1313–1321.

    Article  CAS  Google Scholar 

  • Nguyen, V. A., Bang, S., Viet, P. H., & Kim, K.-W. (2009). Contamination of groundwater and risk assessment for arsenic exposure in Ha Nam province, Vietnam. Environment International, 35(3), 466–472.

    Article  CAS  Google Scholar 

  • Nickson, R., McArthur, J., Shrestha, B., Kyaw-Myint, T., & Lowry, D. (2005). Arsenic and other drinking water quality issues, Muzaffargarh District, Pakistan. Applied Geochemistry, 20(1), 55–68.

    Article  CAS  Google Scholar 

  • Okibe, F., Ekanem, E., Paul, E., Shallangwa, G., Ekwumemgbo, P., Sallau, M., et al. (2010). Fluoride content of soil and vegetables from irrigation farms on the bank of river Galma, Zaria, Nigeria. Australian Journal of Basic and Applied Sciences, 4(5), 779–784.

    CAS  Google Scholar 

  • Organization, W. H. (2008). Guidelines for drinking-water quality [electronic resource]: Incorporating, 1st and 2nd addenda, vol. 1, Recommendations.

  • Orloff, K., Mistry, K., & Metcalf, S. (2009). Biomonitoring for environmental exposures to arsenic. Journal of Toxicology and Environmental Health B, 12, 509–524.

    Article  CAS  Google Scholar 

  • Patel, K., Shrivas, K., Brandt, R., Jakubowski, N., Corns, W., & Hoffmann, P. (2005). Arsenic contamination in water, soil, sediment and rice of central India. Environmental Geochemistry and Health, 27(2), 131–145.

    Article  CAS  Google Scholar 

  • Poureslami, H. R., Khazaeli, P., & Noori, G. R. (2008). Fluoride in food and water consumed in Koohbanan (Kuh-e Banan), Iran. Fluoride, 41(3), 216–219.

    CAS  Google Scholar 

  • Rafique, T., Naseem, S., Bhanger, M. I., & Usmani, T. H. (2008). Fluoride ion contamination in the groundwater of Mithi sub-district, the Thar Desert, Pakistan. Environmental Geology, 56(2), 317–326.

    Article  CAS  Google Scholar 

  • Rafique, T., Naseem, S., Usmani, T. H., Bashir, E., Khan, F. A., & Bhanger, M. I. (2009). Geochemical factors controlling the occurrence of high fluoride groundwater in the Nagar Parkar area, Sindh, Pakistan. Journal of Hazardous Materials, 171, 424–430.

    Article  CAS  Google Scholar 

  • Rager, J. E., Bailey, K. A., Smeester, L., Miller, S. K., Parker, J. S., Laine, J. E., et al. (2014). Prenatal arsenic exposure and the epigenome: altered microRNAs associated with innate and adaptive immune signaling in newborn cord blood. Environmental and Molecular Mutagenesis, 55(3), 196–208.

    Article  CAS  Google Scholar 

  • Roychowdhury, T., Tokunaga, H., & Ando, M. (2003). Survey of arsenic and other heavy metals in food composites and drinking water and estimation of dietary intake by the villagers from an arsenic-affected area of West Bengal, India. Science of the Total Environment, 308(1–3), 15–35.

    Article  CAS  Google Scholar 

  • Ruan, J., Ma, L., Shi, Y., & Han, W. (2004). The impact of pH and calcium on the uptake of fluoride by tea plants (Camellia sinensis L.). Annals of Botany, 93(1), 97–105.

    Article  CAS  Google Scholar 

  • Shah, M. T., & Danishwar, S. (2003). Potential fluoride contamination in the drinking water of Naranji area, northwest frontier province, Pakistan. Environmental Geochemistry and Health, 25(4), 475–481.

    Article  Google Scholar 

  • Shrestha, B. (2002). Drinking water quality: Future directions for UNICEF in Pakistan Consultancy Report 2 of 3. Islamabad: Water Quality, SWEET Project, UNICEF Pakistan.

    Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517–568.

    Article  CAS  Google Scholar 

  • Sofuoglu, S. C., & Kavcar, P. (2008). An exposure and risk assessment for fluoride and trace metals in black tea. Journal of Hazardous Materials, 158(2–3), 392–400.

    Article  CAS  Google Scholar 

  • Tahir, M. (2000). Report on arsenic in groundwater of Attock and Rawalpindi Districts. Pakistan Council of Research in Water Resources (PCRWR), Ministry of Science & Technology, Government of Pakistan.

  • Tsuji, J. S., Perez, V., Garry, M. R., & Alexander, D. D. (2014). Association of low-level arsenic exposure in drinking water with cardiovascular disease: A systematic review and risk assessment. Toxicology, 323, 78–94.

    Article  CAS  Google Scholar 

  • Wang, X. C., Kawahara, K., & Guo, X. J. (1999). Fluoride contamination of groundwater and its impact on human health in Inner Mongolia area. Aqua, 48, 146–153.

    CAS  Google Scholar 

  • Xiong, X., Liu, J., He, W., Xia, T., He, P., Chen, X., et al. (2007). Dose–effect relationship between drinking water fluoride levels and damage to liver and kidney functions in children. Environmental Research, 103(1), 112–116.

    Article  CAS  Google Scholar 

  • Yadav, R. K., Sharma, S., Bansal, M., Singh, A., Panday, V., & Maheshwari, R. (2012). Effects of fluoride accumulation on growth of vegetables and crops in Dausa District, Rajasthan, India. Advances in Bioresearch, 3(4).

  • Yadav, P., Singh, B., Garg, V., Mor, S., & Pulhani, V. (2017). Bioaccumulation and health risks of heavy metals associated with consumption of rice grains from croplands in Northern India. Human and Ecological Risk Assessment: An International Journal, 23(1), 14–27.

    Article  CAS  Google Scholar 

  • Yang, C.-Y., Chang, C.-C., Tsai, S.-S., Chuang, H.-Y., Ho, C.-K., & Wu, T.-N. (2003). Arsenic in drinking water and adverse pregnancy outcome in an arseniasis-endemic area in northeastern Taiwan. Environmental Research, 91(1), 29–34. https://doi.org/10.1016/S0013-9351(02)00015-4.

    Article  Google Scholar 

  • Yoshida, T., Yamauchi, H., & Sun, F. G. (2004). Chronic health effects in people exposed to arsenic via the drinking water: Dose–response relationships in review. Toxicology and Applied Pharmacology, 198, 243–252.

    Article  CAS  Google Scholar 

  • Zheng, B., Yu, X., Zhand, J., & Zhou, D. (1996). Environmental geochemistry of coal and arsenic in Southwest Guizhou, P.R. China. 30th International Geological Congress Abstracts 3, 410

Download references

Acknowledgements

The authors are grateful for the financial support of the Higher Education commission (HEC), Islamabad, Pakistan (Pin # 2Ps1-182).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tasneem G. Kazi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazi, T.G., Brahman, K.D., Baig, J.A. et al. Bioaccumulation of arsenic and fluoride in vegetables from growing media: health risk assessment among different age groups. Environ Geochem Health 41, 1223–1234 (2019). https://doi.org/10.1007/s10653-018-0207-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-018-0207-8

Keywords

Navigation