Skip to main content
Log in

Genotoxic effects of PM10 and PM2.5 bound metals: metal bioaccessibility, free radical generation, and role of iron

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The present study was undertaken to examine the possible genotoxicity of ambient particulate matter (PM10 and PM2.5) in Pune city. In both size fractions of PM, Fe was found to be the dominant metal by concentration, contributing 22% and 30% to the total mass of metals in PM10 and PM2.5, respectively. The speciation of soluble Fe in PM10 and PM2.5 was investigated. The average fraction of Fe3+ and Fe2+ concentrations in PM2.5 was 80.6% and 19.3%, respectively, while in PM2.5 this fraction was 71.1% and 29.9%, respectively. The dominance of Fe(III) state in both PM fractions facilitates the generation of hydroxyl radicals (·OH), which can damage deoxyribose nucleic acid (DNA), as was evident from the gel electrophoresis study. The DNA damage by ·OH was supported through the in silico density functional theory (DFT) method. DFT results showed that C8 site of guanine (G)/adenine (A) and C6 site of thymine (T)/cytosine (C) would be energetically more favorable for the attack of hydroxyl radicals, when compared with the C4 and C5 sites. The non-standard Watson–Crick base pairing models of oxidative products of G, A, T and C yield lower-energy conformations than canonical dA:dT and dG:dC base pairing. This study may pave the way to understand the structural consequences of base-mediated oxidative lesions in DNA and its role in human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adhikari, A., Kumar, A., Heizer, A. N., Palmer, B. J., Pottiboyina, V., Liang, Y., et al. (2013). Hydroxyl ion addition to one-electron oxidized thymine: Unimolecular interconversion of C5 to C6 OH-adducts. Journal of American Chemical Society, 135, 3121–3135.

    Article  CAS  Google Scholar 

  • Arunan, E., Desiraju, G. R., Klein, R. A., Sadlej, J., Scheiner, S., Alkorta, I., et al. (2011). Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure and Applied Chemistry, 83, 1637–1641.

    Article  CAS  Google Scholar 

  • Balakrishnaiah, G., Kumar, K. R., Gopal, K. R., Reddy, R. R., Reddy, L. S. S., Narasimhulu, K., et al. (2011). Characterization of PM, PM10, PM2.5 mass concentrations at a tropical semi-arid station in Anantpur, India. Indian Journal of Radio and Space Physics, 40, 95–104.

    Google Scholar 

  • Banerjee, A., Santos, W. L., & Verdine, J. L. (2006). Structure of a DNA glycosylase searching for lesions. Science, 311, 1153–1157.

    Article  CAS  Google Scholar 

  • Banerjee, A., Yang, W., Karplus, M., & Verdine, J. L. (2005). Structure of a repair enzyme interrogating undamaged DNA elucidates recognition of damaged DNA. Nature, 434, 612–618.

    Article  CAS  Google Scholar 

  • Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact Exchange. Journal of Chemical Physics, 98, 5648–5652.

    Article  CAS  Google Scholar 

  • Biswas, S., Verma, V., Schauer, J. J., Cassee, F. R., Cho, A. K., & Sioutas, C. (2009). Oxidative potential of semi volatile and non-volatile particulate matter (PM) from heavy-duty vehicles retrofitted with emission control technologies. Environmental Science and Technology, 43(10), 3905–3912.

    Article  CAS  Google Scholar 

  • Bourdat, A. G., Douki, T., Frelon, S., Gasparutto, D., & Cadet, J. (2000). Tandem base lesions are generated by hydroxyl radical isolated DNA in aerated aqueous solution. Journal of American Chemical Society, 122, 4549–4556.

    Article  CAS  Google Scholar 

  • Brown, K. L., Basu, A. K., & Stone, M. P. (2009). The cis-(5R, 6S)-thymine glycol lesion occupies the wobble position when mismatched with deoxyguanosine in DNA. Biochemistry, 48, 9722–9733.

    Article  CAS  Google Scholar 

  • Brown, K. L., Roginskaya, M., Zou, Y., Altamirano, A., Basu, A. K., & Stone, M. P. (2010). Binding of the human nucleotide excision repair proteins XPA and XPC/HR23B to the 5R-thymine glycol lesion and structure of the cis-(5R, 6S) thymine glycol epimer in the 5’-GTgG-3’ sequence: destabilization of two base pairs at the lesion site. Nucleic Acids Research, 38, 428–440.

    Article  CAS  Google Scholar 

  • Burade, S. S., Saha, T., Bhuma, Naresh, Kumbhar, N. M., Kotmale, A., Rajamohanan, P. R., et al. (2017). Self-assembly of fluorinated sugar amino acid derived α, γ-cyclic peptides into transmembrane anion transport. Organic Letters, 19, 5948–5951.

    Article  CAS  Google Scholar 

  • Cadet, J., Douki, T., & Ravanat, J.-L. (2010). Oxidatively generated base damage to cellular DNA. Free Radical Biology & Medicine, 49, 9–21.

    Article  CAS  Google Scholar 

  • Cadet, J., & Wagner, R. (2013). DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harbor Perspectives in Biology, 5, a012559.

    Article  CAS  Google Scholar 

  • Canepari, S., Perrino, C., Olivieri, F., & Astolfi, M. L. (2008). Characterisation of the traffic sources of PM through size-segregated sampling, sequential leaching and ICP analysis. Atmospheric Environment, 42(35), 8161–8175.

    Article  CAS  Google Scholar 

  • Cassee, F. R., Héroux, M. E., Miriam, E., Nijland, G., & Kelly, F. J. (2013). Particulate matter beyond mass: recent health evidence on the role of fractions, chemical constituents and sources of emission. Inhalation Toxicology, 25(14), 802–812.

    Article  CAS  Google Scholar 

  • Charrier, J. G., & Anastasio, C. (2011). Impacts of antioxidants on hydroxyl radical production from individual and mixed transition metals in a surrogate lung fluid. Atmospheric Environment, 45, 7555–7562.

    Article  CAS  Google Scholar 

  • Chen, H., Johnson, F., Grollman, A. P., & Patel, D. J. (1996). Structural studies of the ionizing radiation adduct 7, 8-dihydro-8-oxoadenine (A Oxo) positioned opposite thymine and guanine in DNA duplexes. Magnetic Resonance in Chemistry, 34, 23.

    Article  Google Scholar 

  • Chen, J., Wang, W., Hongjie, L., & Lihong, R. (2012). Determination of road dust loadings and chemical characteristics using resuspension. Environmental Monitoring and Assessment, 184(3), 1693–1709.

    Article  CAS  Google Scholar 

  • Cheng, Q., Gu, J., Compaan, K. R., & Schaefer, H. F. (2010). Hydroxyl radical reactions with adenine: reactant complexes, transition states, and product complexes. Chemistry - A European Journal, 16, 11848–11858.

    Article  CAS  Google Scholar 

  • Colson, A. O., & Sevilla, M. D. (1995). Ab Initio molecular orbital calculations of radicals formed by H and OH addition to the DNA bases: electron affinities and ionization potentials. Journal of physical chemistry, 99, 13033–13037.

    Article  CAS  Google Scholar 

  • Daigle, C. C., Chalupa, D. C., Gibb, F. R., Morrow, P. E., Oberdorster, G., & Utell, M. J. (2003). Ultrafine particle deposition in humans during rest and exercise. Inhalation Toxicology., 15, 539–552.

    Article  CAS  Google Scholar 

  • Davy, P. K., Gunchin, G., Markwitz, A., Trompetter, W. J., Barry, B. J., Shagjjamba, D., et al. (2011). Air particulate matter pollution in Ulaanbaatar, Mongolia: Determination of composition, source contributions and source locations. Atmospheric Pollution Research, 2, 126–137.

    Article  CAS  Google Scholar 

  • Di Pietro, A., Visalli, G., Munaò, F., Baluce, B., La Maestra, S., Primerano, P., et al. (2009). Oxidative damage in human epithelial alveolar cells exposed in vitro to oil fly ash transition metals. International Journal of Hygiene and Environmental Health, 212, 196–208.

    Article  CAS  Google Scholar 

  • Doelman, C. J., & Bast, A. (1990). Oxygen radicals in lung pathology. Free Radical Biology and Medicine., 9(5), 381–400.

    Article  CAS  Google Scholar 

  • Donahue, P. S., Szulik, M. W., & Stone, M. P. (2014). Solution NMR structure of DNA dodecamer with A: C mismatch. Protein data bank (2MO7.pdb, https://doi.org/10.2210/pdb2mo7/pdb).

  • Donaldson, K., Li, X. Y., & MacNee, W. (1998). Ultrafine (nanometre) particle mediated lung injury. Journal of Aerosol Science, 29(5–6), 553–560.

    Article  CAS  Google Scholar 

  • Donaldson, K., & Stone, V. (2003). Current hypotheses on mechanisms of toxicity of ultrafine particles. Annali dell’Istituto Superiore di Sanita (Ann Ist Super Sanita), 39(3), 405–410.

    CAS  Google Scholar 

  • Dumont, E., & Monari, A. (2015). Understanding DNA under oxidative stress and sensitization: The role of molecular modeling. Frontiers in Chemistry, 3, 43.

    Article  CAS  Google Scholar 

  • Faiola, C., Johansen, A. M., Rybka, S., Nieber, A., Thomas, C., Bryner, S., et al. (2011). Ultrafine particulate ferrous iron and anthracene associations with mitochondrial dysfunction. Aerosol Science and Technology, 45, 1109–1122.

    Article  CAS  Google Scholar 

  • Farrugia, G., & Balzan, R. (2012). Oxidative stress and programmed cell death in yeast. Frontiers in Oncology, 2(64), 1–21.

    Google Scholar 

  • Freidovich, I. (1999). Fundamental aspects of reactive oxygen species, or what’s the matter with oxygen? Annals New York Academy of Sciences, 893, 13–18.

    Article  Google Scholar 

  • Fromme, J. C., Banerjee, A., Huang, S. J., & Verdine, J. L. (2004). Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase. Nature, 427, 652–656.

    Article  CAS  Google Scholar 

  • Gates, K. S. (2009). An overview of chemical processes that damage cellular DNA: Spontaneous hydrolysis, alkylation, and reactions with radicals. Chemical Research in Toxicology, 22, 1747–1760.

    Article  CAS  Google Scholar 

  • Ghio, A. J., Stonehuerner, J., Dailey, L. A., & Carter, J. D. (1999). Metals associated with both the water–soluble and insoluble fractions of an ambient air pollution particle catalyze an oxidative stress. Inhalation Toxicology, 11, 37–49.

    Article  CAS  Google Scholar 

  • Greenwell, L. L., Moreno, T., Jones, T. P., & Richards, R. J. (2002). Particle-induced oxidative damage is ameliorated by pulmonary antioxidants. Free Radical Biology and Medicine, 329, 898–905.

    Article  Google Scholar 

  • Gugamsetty, B., Wei, H., Liu, C. N., Awasthi, A., Hsu, S. C., Tsai, C. J., et al. (2012). Source characterization and apportionment of PM10, PM2.5 and PM0.1 by using positive matrix factorization. Aerosol Air Quality and Research, 12, 476–491.

    Article  CAS  Google Scholar 

  • Gupta, I., & Kumar, R. (2006). Trends of particulate matter in four cities in India. Atmospheric Environment, 40, 2552–2566.

    Article  CAS  Google Scholar 

  • Halliwell, B., & Gutteridge, J. M. C. (1986). Oxygen free-radicals and iron in relation to biology and medicine—Some problems and concepts. Archives of Biochemistry and Biophysics, 246, 501–514.

    Article  CAS  Google Scholar 

  • Halliwell, B., & Gutteridge, J. M. C. (1999). Free radicals in biology and medicine. Oxford: Oxford University Press.

    Google Scholar 

  • Han, J. Y., Takeshita, K., & Utsumi, H. (2001). Noninvasive detection of hydroxyl radical generation in lung by diesel exhaust particles. Free Radical Biology and Medicine, 30, 516–525.

    Article  CAS  Google Scholar 

  • Heal, M. R., Hibbs, L. R., Agius, R. M., & Beverland, I. J. (2005). Total and water-soluble trace metal content of urban background PM10, PM2.5 and black smoke in Edinburgh. UK. Atmospheric Environment, 39, 1417–1430.

    Article  CAS  Google Scholar 

  • Hehre, W. J., Radom, L., Schleyer, P. V. R., & Pople, J. A. (1986). Ab initio molecular orbital theory. New York: Wiley.

    Google Scholar 

  • Hsu, S. C., Lin, F. J., & Jeng, W. L. (2005). Seawater solubility of marine aerosols associated natural and anthropogenic metals. Atmospheric Environment, 39, 3989–4001.

    Article  CAS  Google Scholar 

  • Huang, X., Cheng, J., Bo, D., Betha, R., & Balasubramanian, R. (2016). Bioaccessibility of airborne particulate-bound trace elements in Shanghai and health risk assessment. Frontiers in Environmental Science, 4(76), 1–10.

    Google Scholar 

  • Ji, Y. J., Xia, Y. Y., Zhao, M. W., Huang, B. D., & Li, F. (2005). Theoretical study of the % OH reaction with cytosine. Journal of Molecular Structure: THEOCHEM, 723, 123–129.

    Article  CAS  Google Scholar 

  • Jiang, S. Y. N., Yang, F., Chan, K., & Ning, Z. (2014). Water solubility of metals in coarse PM and PM2.5 in typical urban environment in Hong Kong. Atmospheric Pollution Research, 5, 236–244.

    Article  CAS  Google Scholar 

  • Kam, W., Ning, Z., Shafer, M. M., Schauer, J. J., & Sioutas, C. (2011). Chemical characterization and redox potential of coarse and fine particulate matter (PM) in underground and ground-level rail systems of the Los Angeles Metro. Environmental Science and Technology, 45, 6769–6776.

    Article  CAS  Google Scholar 

  • Karthikeyan, S., Joshi, U. M., & Balasubramanian, R. (2006). Microwave assisted sample preparation for determining water-soluble fraction of trace elements in urban airborne particulate matter: Evaluation of bioavailability. Analytica Chimica Acta, 576(1), 23–30.

    Article  CAS  Google Scholar 

  • Kelly, F. J., & Fussell, J. C. (2012). Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmospheric Environment, 60, 504–526.

    Article  CAS  Google Scholar 

  • Kersten, M., Kriews, M., & Forstner, U. (1991). Partitioning of trace metals released from polluted marine aerosols in coastal seawater. Marine Chemistry, 36, 165–182.

    Article  CAS  Google Scholar 

  • Khayatian, G., Hassanpoor, S., Nasiri, F., & Zolali, A. (2012). Preconcentration, determination and speciation of iron by solid-phase extraction using dimethyl (e)-2-[(z)-1-acetyl)-2-hydroxy-1-propenyl]-2-butenedioate. Química Nova, 35(3), 535–540.

    Article  CAS  Google Scholar 

  • Kothai, P., Saradhi, I. V., Pandit, G. G., Markwitz, A., & Puranik, V. D. (2011). Chemical characterization and source identification of particulate matter at an urban site of Navi Mumbai, India. Aerosol and Air Quality Research, 11, 560–569.

    Article  CAS  Google Scholar 

  • Krahn, J. M., Beard, W. A., Miller, H., Grollman, A. P., & Wilson, S. H. (2003). Structure of DNA polymerase β with the mutagenic DNA lesion 8-oxodeoxyguanine reveals structural insights into its coding potential. Structure, 11, 121–127.

    Article  CAS  Google Scholar 

  • Kulshrestha, A., Satsangi, P. G., Masih, J., & Taneja, A. (2009). Metal concentration of PM2.5 and PM10 particles and seasonal variations in urban and rural environment of Agra, India. Science of the Total Environment, 407, 6196–6204.

    Article  CAS  Google Scholar 

  • Kumagai, Y., Kato, J. I., Hoshino, K., Akasaka, T., Sato, K., & Ikeda, H. (1996). Quinolone-resistant mutants of Escherichia coli DNA topo-isomerase IV par C gene. Antimicrobial Agents and Chemotherapy, 40, 710–714.

    Article  CAS  Google Scholar 

  • Kumar, A., Pottiboyina, V., & Sevilla, M. D. (2011). Hydroxyl radical (OH·) reaction with guanine in an aqueous environment: A DFT study. Journal of Physical chemistry B, 115, 15129–15137.

    Article  CAS  Google Scholar 

  • Kumbhar, N. M., Kumbhar, B. V., & Sonawane, K. D. (2012). Structural significance of hypermodified nucleic acid base hydroxywybutine (OHyW) which occur at 37th position in the anticodon loop of yeast tRNAPhe. Journal of Molecular Graphics and Modelling, 38, 174–185.

    Article  CAS  Google Scholar 

  • Leonard, G. A., Guy, A., Brown, T., Teoule, R., & Hunter, W. N. (1992). Conformation of guanine-8-oxoadenine base pairs in the crystal structure of d(CGCGAATT(O8A)GCG). Biochemistry, 31, 8415–8420.

    Article  CAS  Google Scholar 

  • Li, N., Xia, T., & Nel, A. E. (2008). The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radical Biology and Medicine, 44, 1689–1699.

    Article  CAS  Google Scholar 

  • Lin, Z.-Q., Xi, Z.-G., Yang, D.-F., Chao, F.-H., Zhang, H.-S., Zhang, W., et al. (2009). Oxidative damage to lung tissue and peripheral blood in endotracheal PM2.5-treated rats. Biomedical and Environmental Sciences, 22, 223–228.

    Article  CAS  Google Scholar 

  • Lu, S., Feng, M., Yao, Z., Jing, A., Yufang, Z., & Wu, M. (2011). Physicochemical characterization and cytotoxicity of ambient coarse, fine and ultrafine particulate matters in Shanghai atmosphere. Atmospheric Environment, 45, 736–744.

    Article  CAS  Google Scholar 

  • Lu, S., Zhenkun, Y., Xiaohui, C., Minghong, W., Guoying, S., Jiamo, F., et al. (2008). The relationship between physicochemical characterization and the potential toxicity of fine particulates (PM2.5) in Shanghai atmosphere. Atmospheric Environment, 42, 7205–7214.

    Article  CAS  Google Scholar 

  • Majestic, B. J., Schauer, J. J., & Shafer, M. (2006). Development of a wet-chemical method for the speciation of iron in atmospheric aerosols. Environmental Science and Technology, 40, 2346–2351.

    Article  CAS  Google Scholar 

  • Markad, P., Kumbhar, N. M., & Dhavale, D. D. (2016). Synthesis of the C8’-epimeric thymine pyranosyl amino acid core of amipurimycin. Beilstein Journal of Organic Chemistry, 12, 1765–1771.

    Article  CAS  Google Scholar 

  • McAuley-Hecht, K. E., Leonard, G. A., Gibson, N. J., Thomson, J. B., Watson, W. P., Hunter, W. N., et al. (1994). Crystal structure of a DNA duplex containing 8-hydroxydeoxy-guanine-adenine base pairs. Biochemistry, 33, 10266–10270.

    Article  CAS  Google Scholar 

  • McGeer, J., Henningsen, G., Lanno R., Fisher, N., Sappington, K., Drexler J., Beringer, M. (2004). Issue paper on the bioavailability and bioaccumulation of metals. U.S. Environmental Protection Agency, Risk Assessment Forum.

  • Moller, P., Danielsen, P. H., Karottki, D. G., Jantzen, K., Roursgaard, M., Klingberg, H., et al. (2014). Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles. Mutation Research, 762, 133–166.

    Article  CAS  Google Scholar 

  • Ondov, J. M., Choquette, C. E., Zoller, W. H., Gordon, G. E., Biermann, A. H., & Hef, R. E. (1989). Atmospheric behavior of trace elements on particles emitted from a coal-fired power plant. Atmospheric Environment, 23(10), 2193–2204.

    Article  CAS  Google Scholar 

  • Pandey, P., Patel, D. K., Khan, A. H., Barman, S. C., Murthy, R. C., & Kisku, G. C. (2013). Temporal distribution of fine particulates (PM2.5, PM10), potentially toxic metals, PAHs and Metal-bound carcinogenic risk in the population of Lucknow City, India. Journal of Environmental Science and Health, Part A, 48, 730–745.

    Article  CAS  Google Scholar 

  • Pipal, A. S., Jan, R., Satsangi, P. G., Tiwari, S., & Taneja, A. (2014). Study of surface morphology, elemental composition and origin of atmospheric aerosols (PM2.5 and PM10) over Agra, India. Aerosol and Air Quality Research, 14, 1685–1700.

    Article  CAS  Google Scholar 

  • Praagh, M. V. (2008). Metal releases from municipal solid waste incineration air pollution control residue with mixed compost. Waste Management and Research, 26, 377–388.

    Article  CAS  Google Scholar 

  • Rahman, K. (2007). Studies on free radicals, antioxidants, and co-factors. Clinical Interventions in Aging, 2(2), 219–236.

    CAS  Google Scholar 

  • Raven, K. P., & Loeppert, R. H. (1997). Heavy metals in the environment: trace element composition of fertilizers and soil amend-ments. Journal of Environmental Quality, 26, 551–557.

    Article  CAS  Google Scholar 

  • Reichhardt, T. (1995). Weighting the health risks of airborne particulates. Environment Science and Technology, 29, 360–364.

    Article  Google Scholar 

  • Risom, L., Moller, P., & Loft, S. (2005). Oxidative stress-induced DNA damage by particulate air pollution. Mutation Research, 592, 119–137.

    Article  CAS  Google Scholar 

  • Rong-Ri, T., Dong-Qi, W., & Feng-Shou, Z. (2014). Damage mechanism of hydroxyl radicals toward adenine–thymine base pair. Chinese Physics B., 23(2), 027103.

    Article  CAS  Google Scholar 

  • Satsangi, P. G., & Yadav, S. (2014). Chemical and morphological study of PM10 and PM2.5 in Pune, India. International Journal of Environment and Waste Management, 13(2), 199–216.

    Google Scholar 

  • Schins, R. P., Lightbody, J. H., Borm, P. J., Shi, T., Donaldson, K., & Stone, V. (2004). Inflammatory effects of coarse and fine particulate matter in relation to chemical and biological constituents. Toxicology and Applied Pharmacology, 195, 1–11.

    Article  CAS  Google Scholar 

  • Schyman, P., Eriksson, L. A., Zhang, R., & Laaksonen, A. (2008). Hydroxyl radical—Thymine adduct induced DNA damages. Chemical Physics Letters, 458, 186–189.

    Article  CAS  Google Scholar 

  • Shi, T., Schins, R. P. F., Knaapen, A. M., Kuhlbush, T., Pitz, M., Heinrich, J., et al. (2003). Hydroxyl radical generation by electron paramagnetic resonance as a new method to monitor ambient particulate matter composition. Journal of Environmental Monitoring, 5, 550–556.

    Article  CAS  Google Scholar 

  • Sholkovitz, E. R., Sedwick, P. N., Church, T. M., Baker, A. R., & Powell, C. F. (2012). Fractional solubility of aerosol iron: Synthesis of a globalscale data set. Geochimica et Cosmochimica Acta, 89, 173–189.

    Article  CAS  Google Scholar 

  • Sonntag, C. (2006). Free-radical-induced DNA damage and its repair: A chemical perspective. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Squadrito, G., Cueto, R., Dellinger, B., & Pryor, W. (2001). Quinoid redox cycling as a mechanism for sustained free radical generation by inhaled airborne particulate matter. Free radical biology & medicine, 31(9), 1132–1138.

    Article  CAS  Google Scholar 

  • Steiner, T. (2003). CH…O hydrogen bonding in crystals. Crystallography Review, 9, 177–228.

    Article  CAS  Google Scholar 

  • Sun, Y., Guoshun, Z., Aohan, T., Ying, W., & Zhisheng, A. (2006). Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing. Environmental Science and Technology, 40, 3148–3155.

    Article  CAS  Google Scholar 

  • Takahama, S., Gilardoni, S., & Russell, L. M. (2008). Single-particle oxidation state and morphology of atmospheric iron aerosols. Journal of Geophysical Research, 113(D22202), 1–16.

    Google Scholar 

  • Tian, L., Koshland, C. P., Yano, J., Yachandra, V. K., Yu, I. T. S., Lee, S. C., et al. (2009). Carbon-centered free radicals in particulate matter emissions from wood and coal combustion. Energy & Fuels, 23, 2523–2526.

    Article  CAS  Google Scholar 

  • Tiwari, S., Chate, D. M., Pragya, P., Kaushar, A., & Deewan, S. B. (2012). Variations in mass of the PM10, PM2.5 and PM1 during the monsoon and the winter at New Delhi. Aerosol and Air Quality Research, 12, 20–29.

    Article  CAS  Google Scholar 

  • Torshin, I. Y., Weber, I. T., & Harrison, R. W. (2002). Geometrical criteria of hydrogen bonds in proteins and identification of ‘bifurcated’ hydrogen bonds. Protein Engineering, 15, 359–363.

    Article  CAS  Google Scholar 

  • Valavanidis, A., Salika, A., & Theodoropoulou, A. (2000). Generation of hydroxyl radicals by urban suspended particulate air matter: The role of iron ions. Atmospheric Environment, 34, 2379–2386.

    Article  CAS  Google Scholar 

  • Valavanidis, A., Vlachogianni, T., Fiotakis, K., & Loridas, S. (2013). Pulmonary oxidative stress, inflammation and cancer: Respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. International Journal of Environmental Research and Public Health, 10, 3583–3590.

    Article  CAS  Google Scholar 

  • Valavanidis, A., Vlahogianni, T., Dassenakis, M., & Scoullos, M. (2006). Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and Environmental Safety, 64(2), 178–189.

    Article  CAS  Google Scholar 

  • Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 39, 44–84.

    Article  CAS  Google Scholar 

  • Wagner, J. R., & Cadet, J. (2010). Oxidation reactions of cytosine DNA components by hydroxyl radical and one-electron oxidants in aerated aqueous solutions. Accounts of Chemical Research, 43, 564–571.

    Article  CAS  Google Scholar 

  • Xiao, Z., Shao, L., Zhang, N., Wang, J., & Wang, J. (2013). Heavy metal compositions and bioreactivity of airborne PM10 in a valley-shaped city in Northwestern China. Aerosol and Air Quality Research, 13, 1116–1125.

    Article  CAS  Google Scholar 

  • Yadav, S., Divya Praveen, O., & Satsangi, P. G. (2015). The effect of climate and meteorological changes on particulate matter in Pune. India. Environmental Monitoring and Assessment., 187, 402.

    Article  CAS  Google Scholar 

  • Yadav, S., & Satsangi, P. G. (2013). Characterization of particulate matter and its related metal toxicity in an urban location in South West India. Environmental Monitoring and Assessment, 185, 7365–7379.

    Article  CAS  Google Scholar 

  • Yun-Zhong, F., Sheng, Y., & Guoyao, W. (2002). Free radicals, antioxidants, and nutrition. Nutrition, 18, 872–879.

    Article  Google Scholar 

  • Zhang, R. B., & Eriksson, L. A. (2007). Effects of OH radical addition on proton transfer in the guanine–cytosine base pair. Journal of Physical Chemistry B, 111, 6571–6576.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors wish to thank CSIR (24(0345)/16), New Delhi, and BCUD (15SCI001596) SPPU, Pune, for financial assistance. Authors also express their gratitude to Head, Department of Chemistry, Savitribai Phule Pune University for encouragement. IIT, SAIF—Mumbai is also acknowledged for analyzing the samples on ICP-AES and EPR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Gursumeeran Satsangi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S., Kumbhar, N., Jan, R. et al. Genotoxic effects of PM10 and PM2.5 bound metals: metal bioaccessibility, free radical generation, and role of iron. Environ Geochem Health 41, 1163–1186 (2019). https://doi.org/10.1007/s10653-018-0199-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-018-0199-4

Keywords

Navigation