Skip to main content
Log in

Assessing the potential origins and human health risks of trace elements in groundwater: A case study in the Khoy plain, Iran

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The objectives of this study were to measure some trace element concentrations in the groundwater of the Khoy area in northwestern Iran, understand their potential origins using multivariate statistical approaches (correlation analysis, cluster analysis and factor analysis), and evaluate their non-carcinogenic human health risks to local residents through drinking water intake. The trace element status of the groundwater and the associated health risks in the study area have not previously been reported. Groundwater water samples were collected from 54 water sources in July 2017 in the study area. Samples were measured for EC, pH, major and minor elements and some trace elements (Fe, Mn, Al, Zn, Cr, Pb, Cd, Co, Ni and As). The levels of EC, F, Cd, Pb, Zn, As and all the major ions except K exceeded permissible levels for drinking water. Multivariate analysis showed that the quality of groundwater was mainly controlled by geogenic factors followed by anthropogenic impacts. Health risk assessment results indicated that Cr and As in the groundwater, with hazard quotient values of 0.0001 and 11.55, respectively, had the lowest and highest impacts of non-carcinogenic risk to adults and children in the area. The high-risk samples were mainly situated in the northeast and southwest of the Khoy plain where the groundwater was saline. The health risk associated with water consumption from the unconfined aquifer was higher than that from the confined aquifer in the study area. Special attention should be paid to groundwater management in the high-risk areas to control factors (e.g., EC, pH and redox) that stimulate the release of trace elements into groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adriano, D. C. (2001). Trace elements in terrestrial environments: Biogeochemistry, bioavailability, and risks of metals (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Anawar, H. M., Akai, J., & Sakugaqa, H. (2003). Mobilization of arsenic from subsurface sediments by the effect of bicarbonate ions in groundwater. Chemosphere, 54, 753–762.

    Article  Google Scholar 

  • Anawar, H. M., Akai, J., Mihaljevič, M., Sikder, A. M., Ahmed, G., Tareq, S. M., et al. (2011). Arsenic contamination in groundwater of Bangladesh: Perspectives on geochemical, microbial and anthropogenic issues. Water, 3, 1050–1076. https://doi.org/10.3390/w3041050.

    Article  CAS  Google Scholar 

  • Arslan, H. (2013). Application of multivariate statistical techniques in the assessment of groundwater quality in seawater intrusion area in Bafra Plain, Turkey. Environmental Monitoring and Assessment, 185, 2439–2452.

    Article  CAS  Google Scholar 

  • Balkhair, K. S., & Ashraf, M. A. (2016). Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi Journal of Biological Sciences, 23(1), 32–44.

    Article  Google Scholar 

  • Barzegar, R., Asghari Moghaddam, A., & Kazemian, N. (2015). Assessment of heavy metals concentrations with emphasis on arsenic in the Tabriz plain aquifers, Iran. Environmental Earth Sciences, 74(1), 297–313.

    Article  CAS  Google Scholar 

  • Barzegar, R., Asghari Moghaddam, A., Soltani, S., Fijani, E., Tziritis, E., & Kazemian, N. (2018). Heavy metal(loid)s in the groundwater of Shabestar area (NW Iran): Source identification and health risk assessment. Exposure and Health. https://doi.org/10.1007/s12403-017-0267-5.

    Article  Google Scholar 

  • Barzegar, R., Asghari Moghaddam, A., & Tziritis, E. (2016). Assessing the hydrogeochemistry and water quality of the Aji-Chay River, northwest of Iran. Environmental Earth Sciences, 75(23), 1486.

    Article  Google Scholar 

  • Barzegar, R., Asghari Moghaddam, A., Tziritis, E., Fakhri, M. S., & Soltani, S. (2017). Identification of hydrogeochemical processes and pollution sources of groundwater resources in the Marand plain, northwest of Iran. Environmental Earth Sciences, 76(7), 297.

    Article  Google Scholar 

  • Belzile, N., Chen, Y. W., Gunn, J. M., & Dixit, S. S. (2004). Sediment trace metal profiles in lakes of Killarney Park, Canada: From regional to continental influence. Environmental Pollution, 130(2), 239–248.

    Article  CAS  Google Scholar 

  • Bhuiyan, M., Rakib, M. A., Dampare, S. B., Ganyaglo, S., & Suzuki, S. (2011). Surface water quality assessment in the central part of Bangladesh using multivariate analysis. KSCE Journal of Civil Engineering, 15(6), 995–1003.

    Article  Google Scholar 

  • Bingöl, D., Ay, Ü., Bozbaş, S. K., & Uzgören, N. (2013). Chemometric evaluation of the heavy metals distribution in waters from the Dilovası region in Kocaeli, Turkey. Marine Pollution Bulletin, 68(1–2), 134–139.

    Article  Google Scholar 

  • Bortey-Sam, N., Nakayama, S. M., Ikenaka, Y., Akoto, O., Baidoo, E., Mizukawa, H., et al. (2015). Health risk assessment of heavy metals and metalloid in drinking water from communities near gold mines in Tarkwa, Ghana. Environmental Monitoring and Assessment, 187(7), 397.

    Article  Google Scholar 

  • Celebi, A., Sengour, B., & Klove, B. (2014). Human health risk assessment of dissolved metals in groundwater and surface waters in the Melen watershed, Turkey. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances & Environmental Engineering, 49, 153–161.

    Article  CAS  Google Scholar 

  • Domenico, P. A., & Schwartz, F. W. (1998). Physical and chemical hydrogeology (2nd ed., p. 506). New York: John Wiley.

    Google Scholar 

  • Duggal, V., Rani, A., Mehra, R., & Balaram, V. (2017). Risk assessment of metals from groundwater in northeast Rajasthan. Journal of Geological Society of India, 90(1), 77–84.

    Article  CAS  Google Scholar 

  • El Alfy, M., Lashin, A., Abdalla, F., & Al-Bassam, A. (2017). Assessing the hydrogeochemical processes affecting groundwater pollution in arid areas using an integration of geochemical equilibrium and multivariate statistical techniques. Environmental Pollution, 229, 760–770. https://doi.org/10.1016/j.envpol.2017.05.052.

    Article  CAS  Google Scholar 

  • Esmaeili, S., Asghari Moghaddam, A., Barzegar, R., & Tziritis, E. (2018). Multivariate statistics and hydrogeochemical modeling for source identification of major elements and heavy metals in the groundwater of Qareh-Ziaeddin plain, NW Iran. Arabian Journal of Geosciences, 11, 5.

    Article  Google Scholar 

  • Giri, S., & Singh, A. K. (2015). Human health risk assessment via drinking water pathway due to metal contamination in the groundwater of Subarnarekha River Basin, India. Environmental Monitoring and Assessment, 187, 63–76.

    Article  Google Scholar 

  • Guo, H., Zhang, B., Li, Y., Berner, Z., Tang, X., Norra, S., et al. (2011). Hydrogeological and biogeochemical constrains of arsenic mobilization in shallow aquifers from the Hetao basin, Inner Mongolia. Environmental Pollution, 159(4), 876–883.

    Article  CAS  Google Scholar 

  • Hardle, W., & Simar, L. (2007). Applied multivariate statistical analysis (2nd ed.). Berlin: Springer.

    Google Scholar 

  • Hylander, L. D., Meili, M., Oliveira, L. J., Silva, E. D. E., Guimaraes, J. R. D., Araujo, D. M., et al. (2000). Relationship of mercury with aluminum, iron and manganese oxy-hydroxides in sediments from the Alto Pantanal, Brazil. The Science of the Total Environment, 260, 97–107.

    Article  CAS  Google Scholar 

  • IBM Corp. (2012). IBM SPSS statistics for windows, version 21.0. Armonk, NY: IBM Corp.

    Google Scholar 

  • Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68, 167–182.

    Article  Google Scholar 

  • Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20, 141–151.

    Article  Google Scholar 

  • Kumaresan, P. R. M. (2008). Factor analysis and linear regression model (LRM) of metal speciation and physico-chemical characters of groundwater samples. Environmental Monitoring and Assessment, 138, 65–79.

    Article  CAS  Google Scholar 

  • Levins, I., & Gosk, G. (2008). Trace elements in groundwater as indicators of anthropogenic impact. Environmental Geology, 55, 285–290.

    Article  CAS  Google Scholar 

  • Li, P., Li, X., Meng, X., Li, M., & Zhang, Y. (2016). Appraising groundwater quality and health risks from contamination in a semiarid region of northwest China. Exposure and Health, 8(3), 361–379. https://doi.org/10.1007/s12403-016-0205-y.

    Article  CAS  Google Scholar 

  • Li, P., & Qian, H. (2011). Human health risk assessment for chemical pollutants in drinking water source in Shizuishan City, Northwest China. Iranian Journal of Environmental Health Science and Engineering, 8(1), 41–48.

    CAS  Google Scholar 

  • Li, P., Qian, H., Howard, K. W. F., & Wu, J. (2015). Heavy metal contamination of Yellow River alluvial sediments, northwest China. Environmental Earth Sciences, 73(7), 3403–3415. https://doi.org/10.1007/s12665-014-3628-4.

    Article  CAS  Google Scholar 

  • Li, P., Tian, R., Xue, C., & Wu, J. (2017). Progress, opportunities and key fields for groundwater quality research under the impacts of human activities in China with a special focus on western China. Environmental Science and Pollution Research, 24(15), 13224–13234. https://doi.org/10.1007/s11356-017-8753-7.

    Article  Google Scholar 

  • Li, P., Wu, J., Qian, H., Lyu, X., & Liu, H. (2014). Origin and assessment of groundwater pollution and associated health risk: A case study in an industrial park, northwest China. Environmental Geochemistry and Health, 36(4), 693–712. https://doi.org/10.1007/s10653-013-9590-3.

    Article  CAS  Google Scholar 

  • Liang, C. P., Wang, S. W., Kao, Y. H., & Chen, J. S. (2016). Health risk assessment of groundwater arsenic pollution in southern Taiwan. Environmental Geochemistry and Health, 38, 1271–1281.

    Article  CAS  Google Scholar 

  • Ma, H. W., Hung, M. L., & Chen, P. C. (2007). A systemic health risk assessment for the chromium cycle in Taiwan. Environment International, 33(2), 206–218.

    Article  CAS  Google Scholar 

  • Nabavi, M. H. (1976). An introduction to the geology of Iran (p. 109). Tehran: Geological Survey of Iran. (in Persian).

    Google Scholar 

  • Nguyen, V. A., Bang, S., Viet, P. H., & Kim, K. W. (2009). Contamination of groundwater and risk assessment for arsenic exposure in Ha Nam Province, Vietnam. Environment International, 35(3), 466–472.

    Article  CAS  Google Scholar 

  • Otto, M. (1998). Multivariate methods. In R. Kellner, J. M. Mermet, M. Otto, & H. M. Widmer (Eds.), Analytical chemistry (p. 916). Weinheim: WileyVCH.

    Google Scholar 

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water analyses. Transactions American Geophysical Union, 25, 914–928.

    Article  Google Scholar 

  • Prüss-Ustün, A., Vickers, C., Haefliger, P., & Bertollini, R. (2011). Knowns and unknowns on burden of disease due to chemicals: A systematic review. Environmental Health, 10, 9.

    Article  Google Scholar 

  • Purushothaman, P., Rao, M. S., Rawat, Y. S., Kumar, C. P., Krishan, G., & Parveen, T. (2014). Evaluation of hydrogeochemistry and water quality in Bist-doab region, Punjab, India. Environmental Earth Sciences, 72(3), 693–706.

    Article  CAS  Google Scholar 

  • Radfar, H., Amini, B., Khalaatbari, M., Emami, M. H., & Bahremand, M. (2005). Geological map of Khoy sheet (1:100,000). Tehran: Geological Survey of Iran.

    Google Scholar 

  • Rahman, M. M., Ng, J. C., & Naidu, R. (2009). Chronic exposure of arsenic via drinking water and its adverse health impacts on humans. Environmental Geochemistry and Health, 31, 189–200.

    Article  CAS  Google Scholar 

  • Rowland, H. A. L., Polya, D. A., Lloyd, J. R., & Pancost, R. D. (2006). Characterisation of organic matter in a shallow, reducing, arsenicrich aquifer, West Bengal. Organic Geochemistry, 37, 1101–1114.

    Article  CAS  Google Scholar 

  • Sakizadeh, M., & Mirzaei, R. (2016). Health risk assessment of Fe, Mn, Cu, Cr in drinking water in some wells and springs of Shush and Andimeshk, Khuzestan Province, Southern Iran. Iranian Journal of Toxicology, 10(2), 29–35.

    Google Scholar 

  • Salminen, R., Batista, M. J., Bidovec, M., Demetriades, A., De Vivo, B., De Vos, W., Duris, M., Gilucis, A., Gregorauskiene, V., Halamic, J., Heitzmann, P., Lima, A., Jordan, G., Klaver, G., Klein, P., Lis, J., Locutura, J., Marsina, K., Mazreku, A., O’Connor, P. J., Olsson, S., Ottesen, R. T., Petersell, V., Plant, J. A., Reeder, S., Salpeteur, I., Sandström, H., Siewers, U., Steenfeldt, A., & Tarvainen, T. (2005). FOREGS geochemical atlas of Europe, part 1: Background information, methodology and maps. Geological Survey of Finland, Espoo, p 525, 36 figures, 362 maps.

  • Singh, H., Singh, D., Singh, S. K., & Shukla, D. N. (2017). Assessment of river water quality and ecological diversity through multivariate statistical techniques, and earth observation dataset of rivers Ghaghara and Gandak, India. International Journal of River Basin Management, 15(3), 347–360.

    Article  Google Scholar 

  • Soltani, S., Asghari Moghaddam, A., Barzegar, R., Kazemian, N., & Tziritis, E. (2017). Hydrogeochemistry and water quality of the Kordkandi-Duzduzan plain, NW Iran: Application of multivariate statistical analysis and PoS index. Environmental Monitoring and Assessment, 189(9), 455.

    Article  Google Scholar 

  • Srivastava, S. K., & Ramanathan, A. L. (2008). Geochemical assessment of groundwater quality in vicinity of Bhalswa landfill, Delhi, India, using graphical and multivariate statistical methods. Environmental Geology, 53(7), 1509–1528.

    Article  CAS  Google Scholar 

  • Su, H., Kang, W., Xu, Y., & Wang, J. (2017). Assessing groundwater quality and health risks of nitrogen pollution in the Shenfu mining area of Shaanxi Province, Northwest China. Exposure and Health. https://doi.org/10.1007/s12403-017-0247-9.

    Article  Google Scholar 

  • Sun, L., Peng, W., & Cheng, C. (2016). Source estimating of heavy metals in shallow groundwater based on UNMIX. Model: A case study. Indian Journal of Geo-Marine Sciences, 45(6), 756–762.

    Google Scholar 

  • Tziritis, E., Datta, P. S., & Barzegar, R. (2017). Characterization and assessment of groundwater resources in a complex hydrological basin of central Greece (Kopaida basin) with the joint use of hydrogeochemical analysis, multivariate statistics and stable isotopes. Aquatic Geochemistry, 23(4), 271–298.

    Article  Google Scholar 

  • Tziritis, E., Skordas, K., & Kelepertsis, A. (2016). The use of hydrogeochemical analyses and multivariate statistics for the characterization of groundwater resources in a complex aquifer system. A case study in Amyros River basin, Thessaly, central Greece. Environmental Earth Sciences, 75(4), 1–11.

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency. (1999). A risk assessment multi-way exposure spreadsheet calculation tool. Washington, DC: United States Environmental Protection Agency.

    Google Scholar 

  • Usman, U. N., Toriman, M. E., Juahir, H., Abdullahi, M. G., Rabiu, A. A., & Isiyaka, H. (2014). Assessment of groundwater quality using multivariate statistical techniques in Terengganu. Science and Technology, 4(3), 42–49. https://doi.org/10.5923/j.scit.20140403.02.

    Article  Google Scholar 

  • Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 301, 236–244.

    Article  Google Scholar 

  • Wedephol, K. H. (1978). Manganese. In K. H. Wedepohl (Ed.), Handbook of geochemistry (Vol. 11/3, pp. 25-K-1/25-K-17). Berlin: Springer.

  • Wongsasuluk, P., Chotpantarat, S., Siriwong, W., & Robson, M. G. (2014). Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani Province, Thailand. Environmental Geochemistry and Health, 36, 169–182.

    Article  CAS  Google Scholar 

  • World Health Organization. (2011). Guidance for immunotoxicity risk assessment for chemicals. IPCS harmonization project document; no. 10, Geneva.

  • Wu, J., Li, P., Qian, H., Duan, Z., & Zhang, X. (2014). Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: Case study in Laoheba phosphorite mine in Sichuan, China. Arabian Journal of Geosciences, 7(10), 3973–3982. https://doi.org/10.1007/s12517-013-1057-4.

    Article  CAS  Google Scholar 

  • Wu, J., & Sun, Z. (2016). Evaluation of shallow groundwater contamination and associated human health risk in an alluvial plain impacted by agricultural and industrial activities, mid-west China. Expo Health, 8(3), 311–329. https://doi.org/10.1007/s12403-015-0170-x.

    Article  CAS  Google Scholar 

  • Wu, M. L., Wang, Y. S., Su, C. C., Wang, H., Dong, J. D., Yin, J. P., et al. (2010). Identification of coastal water quality by statistical analysis methods in Daya Bay, South China Sea. Marine Pollution Bulletin, 60(6), 852–860.

    Article  CAS  Google Scholar 

  • Yang, M., & Sanudo-Wilhelmy, S. (1998). Cadmium and manganese distribution in the Hudson River estuary: Interannual and seasonal variability. Earth and Planetary Science Letters, 19, 982–992.

    Google Scholar 

  • Yeganeh, J., Nazemi, S., & Yousefzadeh, A. (2015). Assessment of the effect of human and industrial activities on groundwater within the city of Khoy. International Journal of Health Studies, 1(2), 26–33. https://doi.org/10.22100/ijhs.v1i2.59.

    Article  Google Scholar 

  • Yidana, S. M., Yakubo, B. B., & Akabzaa, T. M. (2010). Analysis of groundwater quality using multivariate and spatial analyses in the Keta basin, Ghana. Journal of African Earth Sciences, 58, 220–234.

    Article  CAS  Google Scholar 

  • Zhang, Y., Wu, J., & Xu, B. (2018). Human health risk assessment of groundwater nitrogen pollution in Jinghui canal irrigation area of the loess region, northwest China. Environmental Earth Sciences, 77(7), 273. https://doi.org/10.1007/s12665-018-7456-9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Iran Ministry of Science, Research and Technology for providing a scholarship to Rahim Barzegar to conduct this research at McGill University under the supervision of Professor J. Adamowski. We would like to thank Mrs. N. Kazemian for analyzing the trace elements at the Water Quality Control Lab of East Azerbaijan Province. Anonymous reviewers are sincerely acknowledged for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahim Barzegar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barzegar, R., Asghari Moghaddam, A., Adamowski, J. et al. Assessing the potential origins and human health risks of trace elements in groundwater: A case study in the Khoy plain, Iran. Environ Geochem Health 41, 981–1002 (2019). https://doi.org/10.1007/s10653-018-0194-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-018-0194-9

Keywords

Navigation