Skip to main content

Advertisement

Log in

Error propagation in spatial modeling of public health data: a simulation approach using pediatric blood lead level data for Syracuse, New York

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Lead poisoning produces serious health problems, which are worse when a victim is younger. The US government and society have tried to prevent lead poisoning, especially since the 1970s; however, lead exposure remains prevalent. Lead poisoning analyses frequently use georeferenced blood lead level data. Like other types of data, these spatial data may contain uncertainties, such as location and attribute measurement errors, which can propagate to analysis results. For this paper, simulation experiments are employed to investigate how selected uncertainties impact regression analyses of blood lead level data in Syracuse, New York. In these simulations, location error and attribute measurement error, as well as a combination of these two errors, are embedded into the original data, and then these data are aggregated into census block group and census tract polygons. These aggregated data are analyzed with regression techniques, and comparisons are reported between the regression coefficients and their standard errors for the error added simulation results and the original results. To account for spatial autocorrelation, the eigenvector spatial filtering method and spatial autoregressive specifications are utilized with linear and generalized linear models. Our findings confirm that location error has more of an impact on the differences than does attribute measurement error, and show that the combined error leads to the greatest deviations. Location error simulation results show that smaller administrative units experience more of a location error impact, and, interestingly, coefficients and standard errors deviate more from their true values for a variable with a low level of spatial autocorrelation. These results imply that uncertainty, especially location error, has a considerable impact on the reliability of spatial analysis results for public health data, and that the level of spatial autocorrelation in a variable also has an impact on modeling results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arbia, G., Griffith, D. A., & Haining, R. (1998). Error propagation modelling in raster GIS: Overlay operations. International Journal of Geographical Information Science, 12(2), 145–167.

    Article  Google Scholar 

  • Arbia, G., Griffith, D. A., & Haining, R. (1999). Error propagation modeling in raster GIS: Adding and ratioing operations. Cartography and Geographic Information Science, 26(4), 297–316.

    Article  Google Scholar 

  • Barry, S., & Elith, J. (2006). Error and uncertainty in habitat models. Journal of Applied Ecology, 43(3), 413–423.

    Article  Google Scholar 

  • Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society. Series B (Methodological), 36(2), 192–236.

    Google Scholar 

  • Byers, R. K., & Lord, E. E. (1943). Late effects of lead poisoning on mental development. American Journal of Diseases of Children, 66(5), 471–495.

    CAS  Google Scholar 

  • Canfield, R. L., Henderson, C. R., Jr., Cory-Slechta, D. A., Cox, C., Jusko, T. A., & Lanphear, B. P. (2003). Intellectual impairment in children with blood lead concentrations below 10 μg per deciliter. New England Journal of Medicine, 348(16), 1517–1526.

    Article  CAS  Google Scholar 

  • Cayo, M. R., & Talbot, T. O. (2003). Positional error in automated geocoding of residential addresses. International Journal of Health Geographics, 2(1), 1–12.

    Article  Google Scholar 

  • CDC. (2007). Interpreting and managing blood lead levels <10 µg/dL in children and reducing childhood exposures to lead. Morbidity and Mortality Weekly Report, 56, 1–14.

    Google Scholar 

  • CDC. (2013). Blood lead levels in children aged 1–5 years—United States, 1999–2010. Morbidity and Mortality Weekly Report, 62, 245–248.

    Google Scholar 

  • CDC. (2015). Childhood blood lead levels—United States, 2007–2012. Morbidity and Mortality Weekly Report, 62, 76–80.

    Article  Google Scholar 

  • Chun, Y., & Griffith, D. A. (2014). A quality assessment of eigenvector spatial filtering based parameter estimates for the normal probability model. Spatial Statistics, 10, 1–11.

    Article  Google Scholar 

  • Cromley, E. K., & McLafferty, S. L. (2002). GIS and Public Health. New York: The Guilford Press.

    Google Scholar 

  • Dearwent, S. M., Jacobs, R. R., & Halbert, J. B. (2001). Locational uncertainty in georeferencing public health datasets. Journal of Exposure Analysis and Environmental Epidemiology, 11(4), 329–334.

    Article  CAS  Google Scholar 

  • Fisher, P. F. (1999). Models of uncertainty in spatial data. Geographical Information Systems, 1, 191–205.

    Google Scholar 

  • Fisher, P. F., Comber, A., & Wadsworth, R. (2006). Approaches to uncertainty in spatial data. In R. Devillers & R. Jeansoulin (Eds.), Fundamentals of spatial data quality (pp. 43–59). London: ISTE Publishing Company.

    Chapter  Google Scholar 

  • Goldberg, D. W., & Cockburn, M. G. (2010). Improving geocode accuracy with candidate selection criteria. Transactions in GIS, 14, 149–176.

    Article  Google Scholar 

  • Goldberg, D. W., Wilson, J. P., Knoblock, C. A., Ritz, B., & Cockburn, M. G. (2008). An effective and efficient approach for manually improving geocoded data. International Journal of Health Geographics, 7, 60–80.

    Article  Google Scholar 

  • Griffith, D. A. (2003). Spatial autocorrelation and spatial filtering. Berlin: Springer.

    Book  Google Scholar 

  • Griffith, D. A., & Chun, Y. (2016). Evaluating eigenvector spatial filter corrections for omitted georeferenced variables. Econometrics, 4(2), 1–12.

    Google Scholar 

  • Griffith, D. A., Doyle, P. G., Wheeler, D. C., & Johnson, D. L. (1998). A tale of two swaths: Urban childhood blood-lead levels across Syracuse, New York. Annals of the Association of American Geographers, 88, 640–665.

    Article  Google Scholar 

  • Griffith, D. A., Johnson, D. L., & Hunt, A. (2009). The geographic distribution of metals in urban soils: The case of Syracuse, NY. GeoJournal, 74(4), 275–291.

    Article  Google Scholar 

  • Griffith, D. A., Millones, M., Vincent, M., Johnson, D. L., & Hunt, A. (2007). Impacts of positional error on spatial regression analysis: A case study of address locations in Syracuse, New York. Transactions in GIS, 11(5), 655–679.

    Article  Google Scholar 

  • Griffith, D. A., Wong, D. W., & Chun, Y. (2015). Uncertainty-related research issues in spatial analysis. In W. Shi, B. Wu, & A. Stein (Eds.), Uncertainty modelling and quality control for spatial data (pp. 1–11). Boca Raton: CRC Press.

    Google Scholar 

  • Griffith, D. A., Wong, D. W., & Whitfield, T. (2003). Exploring relationships between the global and regional measures of spatial autocorrelation. Journal of Regional Science, 43(4), 683–710.

    Article  Google Scholar 

  • Heuvelink, G. B. (1998). Uncertainty analysis in environmental modelling under a change of spatial scale. Nutrient Cycling in Agroecosystems, 50, 255–264.

    Article  Google Scholar 

  • Heuvelink, G. B., Brown, J. D., & van Loon, E. E. (2007). A probabilistic framework for representing and simulating uncertain environmental variables. International Journal of Geographical Information Science, 21(5), 497–513.

    Article  Google Scholar 

  • Jones, R. R., DellaValle, C. T., Flory, A. R., Nordan, A., Hoppin, J. A., Hofmann, J. N., et al. (2014). Accuracy of residential geocoding in the agricultural health study. International Journal of Health Geographics, 13(1), 37.

    Article  Google Scholar 

  • Lanphear, B. P., Dietrich, K., Auinger, P., & Cox, C. (2000). Cognitive deficits associated with blood lead concentrations <10 microg/dL in US children and adolescents. Public Health Reports, 115(6), 521.

    Article  CAS  Google Scholar 

  • Lee, M., Chun, Y., & Griffith, D. A. (2016). Uncertainties of spatial data analysis introduced by selected sources of error. In Geocomputation proceedings (pp. 18–24).

  • Lidsky, T. I., & Schneider, J. S. (2003). Lead neurotoxicity in children: Basic mechanisms and clinical correlates. Brain, 126(1), 5–19.

    Article  Google Scholar 

  • Lin-Fu, J. S. (1972). Undue absorption of lead among children—A new look at an old problem. The New England Journal of Medicine, 286(13), 702–710.

    Article  CAS  Google Scholar 

  • Mahaffey, K. R., Annest, J. L., Roberts, J., & Murphy, R. S. (1982). National estimates of blood lead levels: United States, 1976–1980. The New England Journal of Medicine, 307(10), 573–579.

    Article  CAS  Google Scholar 

  • Mason, L. H., Harp, J. P., & Han, D. Y. (2014). Pb neurotoxicity: Neuropsychological effects of lead toxicity. BioMed Research International, 2014, 1–8.

    Google Scholar 

  • Prentice, R. L. (1996). Measurement error and results from analytic epidemiology: Dietary fat and breast cancer. JNCI: Journal of the National Cancer Institute, 88(23), 1738–1747.

    Article  CAS  Google Scholar 

  • Razali, N. M., & Wah, Y. B. (2011). Power comparisons of Shapiro–Wilk, Kolmogorov–Smirnov, Lilliefors and Anderson–Darling tests. Journal of Statistical Modeling and Analytics, 2, 21–33.

    Google Scholar 

  • Reeves, G. K., Cox, D. R., Darby, S. C., & Whitley, E. (1998). Some aspects of measurement error in explanatory variables for continuous and binary regression models. Statistics in Medicine, 17(19), 2157–2177.

    Article  CAS  Google Scholar 

  • Robinson, V. B., Avenue, P., & Frank, A. U. (1985). About different kinds of uncertainty in collections of spatial data. Proceedings of AUTO-CARTO, 7, 440–449.

    Google Scholar 

  • Schoof, R. A., Johnson, D. L., Handziuk, E. R., Van Landingham, C., Feldpausch, A. M., Gallagher, A. E., et al. (2015). Assessment of blood lead level declines in an area of historical mining with a holistic remediation and abatement program. Environmental Research, 150, 582–591.

    Article  Google Scholar 

  • Shi, W., & Liu, W. (2000). A stochastic process-based model for the positional error of line segments in GIS. International Journal of Geographical Information Science, 14(1), 51–66.

    Article  Google Scholar 

  • Tiefelsdorf, M., & Griffith, D. A. (2007). Semiparametric filtering of spatial autocorrelation: The eigenvector approach. Environment and Planning A, 39(5), 1193–1221.

    Article  Google Scholar 

  • US FDA. (2017). FDA warns against using Magellan Diagnostics LeadCare testing systems with blood obtained from a vein: FDA safety communication. https://www.census.gov/geo/maps-data/data/tiger.html. Accessed 20 July 2017.

  • US Department of Transportation. (2017). National Address DatabaseArticle title. Retrieved from https://www.transportation.gov/nad.

  • Wong, D. (2009). The modifiable areal unit problem (MAUP). Thousand Oaks: The SAGE Handbook of Spatial Analysis.

    Book  Google Scholar 

  • Wu, J., Funk, T. H., Lurmann, F. W., & Winer, A. M. (2005). Improving spatial accuracy of roadway networks and geocoded addresses. Transactions in GIS, 9(4), 585–601.

    Article  Google Scholar 

  • Yassin, M. M., & Lubbad, A. M. H. (2013). Blood lead level in relation to awareness and self reported symptoms among gasoline station workers in the Gaza strip. Journal of Medicine, 14(2), 135–142.

    Google Scholar 

  • Yoon, J. H., & Ahn, Y. S. (2016). The association between blood lead level and clinical mental disorders in fifty thousand lead-exposed male workers. Journal of Affective Disorders, 190, 41–46.

    Article  CAS  Google Scholar 

  • Zandbergen, P. A. (2008). A comparison of address point, parcel and street geocoding techniques. Computers, Environment and Urban Systems, 32(3), 214–232.

    Article  Google Scholar 

  • Zandbergen, P. A., Hart, T. C., Lenzer, K. E., & Camponovo, M. E. (2012). Error propagation models to examine the effects of geocoding quality on spatial analysis of individual-level datasets. Spatial and Spatio-Temporal Epidemiology, 3(1), 69–82.

    Article  CAS  Google Scholar 

  • Zimmerman, D. L., & Li, J. (2010). The effects of local street network characteristics on the positional accuracy of automated geocoding for geographic health studies. International Journal of Health Geographics, 9(1), 10.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Institutes of Health, Grant 1R01HD076020-01A1; any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monghyeon Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M., Chun, Y. & Griffith, D.A. Error propagation in spatial modeling of public health data: a simulation approach using pediatric blood lead level data for Syracuse, New York. Environ Geochem Health 40, 667–681 (2018). https://doi.org/10.1007/s10653-017-0014-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-017-0014-7

Keywords

Navigation