Skip to main content
Log in

Potentially harmful elements in house dust from Estarreja, Portugal: characterization and genotoxicity of the bioaccessible fraction

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Due to their behavioral characteristics, young children are vulnerable to the ingestion of indoor dust, often contaminated with chemicals that are potentially harmful. Exposure to potentially harmful elements (PHEs) is currently exacerbated by their widespread use in several industrial, agricultural, domestic and technological applications. PHEs cause adverse health effects on immune and nervous systems and can lead to cancer development via genotoxic mechanisms. The present study is an integrated approach that aims at assessing the genotoxicity of bioaccessible PHEs following ingestion of contaminated house dust. A multidisciplinary methodology associating chemical characterization of five house dust samples, extraction of the bioaccessible PHEs in gastric extracts by the unified BARGE method, determination of the bioaccessible fraction and in vitro genotoxicity of gastric extracts in adenocarcinoma gastric human (AGS) cells was developed. The five gastric extracts induced dose-dependent genotoxicity in AGS cells. Copper (bioaccessible concentration up to 111 mg/kg) was probably the prevalent PHE inducing primary DNA damage (up to 5.1-fold increase in tail DNA at 0.53 g/l of gastric extract). Lead (bioaccessible concentration up to 245 mg/kg) was the most prevalent PHE inducing chromosome-damaging effects (r = 0.55; p < 0.001 for micronucleated cells induction). The association of principal component analysis and Spearman’s correlations was decisive to understand the chromosome-damaging properties of the bioaccessible PHEs in AGS cells. This methodology could be used on a larger-scale study to provide useful information for science-based decision-making in regulatory policies, and a better estimation of human exposure and associated health risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agency for Toxic Substances and Disease Registry (ATSDR). (2007). Toxicological profile for lead.

  • Alam-Escamilla, D., Estrada-Muñiz, E., Solís-Villegas, E., Elizondo, G., & Vega, L. (2015). Genotoxic and cytostatic effects of 6-pentadecyl salicylic anacardic acid in transformed cell lines and peripheral blood mononuclear cells. Mutation Research—Genetic Toxicology and Environmental Mutagenesis, 777, 43–53. doi:10.1016/j.mrgentox.2014.11.008.

    Article  CAS  Google Scholar 

  • Anetor, J. I., Wanibuchi, H., & Fukushima, S. (2007). Arsenic exposure and its health effects and risk of cancer in developing countries: Micronutrients as host defence. Asian Pacific Journal of Cancer Prevention, 8, 13–23.

    Google Scholar 

  • Aung, N. N., Yoshinaga, J., & Takahashi, J. (2004). Exposure assessment of lead among Japanese children. Environmental Health and Preventive Medicine, 9, 257–261. doi:10.1007/BF02898139.

    Article  CAS  Google Scholar 

  • Ayala, A., Muñoz, M. F., & Argüelles, S. (2014). Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity, 2014, 360438. doi:10.1155/2014/360438.

    Article  Google Scholar 

  • Benameur, L., Orsière, T., Rose, J., & Botta, A. (2011). Detection of environmental clastogens and aneugens in human fibroblasts by cytokinesis-blocked micronucleus assay associated with immunofluorescent staining of CENP-A in micronuclei. Chemosphere, 84, 676–680. doi:10.1016/j.chemosphere.2011.03.027.

    Article  CAS  Google Scholar 

  • Botelho, M. C., Costa, C., Silva, S., Costa, S., Dhawan, A., Oliveira, P. A., et al. (2014). Effects of titanium dioxide nanoparticles in human gastric epithelial cells in vitro. Biomedicine and Pharmacotherapy, 68, 59–64. doi:10.1016/j.biopha.2013.08.006.

    Article  CAS  Google Scholar 

  • Carlon, C. (Ed.) (2007). Derivation methods of soil screening values in Europe. A review and evaluation of national procedures towards harmonization. European Commission, Joint Research Centre, Ispra, EUR 22805-EN, 306 pp.

  • Chang, L. W. (1996). Toxicology of metals, volume I. CRC Press, Boca Raton, FL. https://www.crcpress.com/Toxicology-of-Metals-Volume-I/Chang/p/book/9780873718035.

  • Chattopadhyay, G., Lin, K. C.-P., & Feitz, A. J. (2003). Household dust metal levels in the Sydney metropolitan area. Environmental Research, 93, 301–307. doi:10.1016/S0013-9351(03)00058-6.

    Article  CAS  Google Scholar 

  • Chen, H., Lu, X., & Li, L. Y. (2014). Spatial distribution and risk assessment of metals in dust based on samples from nursery and primary schools of Xi’an, China. Atmospheric Environment, 88, 172–182. doi:10.1016/j.atmosenv.2014.01.054.

    Article  CAS  Google Scholar 

  • Collins, A. R., Duthie, S. J., & Dobson, V. L. (1993). Direct enzymic detection of endogenous oxidative base damage in human lymphocyte DNA. Carcinogenesis, 14, 1733–1735.

    Article  CAS  Google Scholar 

  • Collins, A. R., Oscoz, A. A., Brunborg, G., Gaivão, I., Giovannelli, L., Kruszewski, M., et al. (2008). The comet assay: Topical issues. Mutagenesis, 23, 143–151. doi:10.1093/mutage/gem051.

    Article  CAS  Google Scholar 

  • Davis, S., & Mirick, D. K. (2006). Soil ingestion in children and adults in the same family. Journal of Exposure Science and Environmental Epidemiology, 16, 63–75.

    Article  CAS  Google Scholar 

  • De Boeck, M., Kirsch-Volders, M., & Lison, D. (2003). Cobalt and antimony: Genotoxicity and carcinogenicity. Mutation research/fundamental and molecular mechanisms of mutagenesis. Metals and Human Cancer, 533, 135–152. doi:10.1016/j.mrfmmm.2003.07.012.

    Google Scholar 

  • Delfino, R. J., Staimer, N., & Vaziri, N. D. (2011). Air pollution and circulating biomarkers of oxidative stress. Air Quality, Atmosphere and Health, 4, 37–52. doi:10.1007/s11869-010-0095-2.

    Article  CAS  Google Scholar 

  • Denys, S., Caboche, J., Tack, K., Rychen, G., Wragg, J., Cave, M., et al. (2012). In vivo validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils. Environmental Science and Technology, 46, 6252–6260. doi:10.1021/es3006942.

    Article  CAS  Google Scholar 

  • Denys, S., Tack, K., Caboche, J., & Delalain, P. (2009). Bioaccessibility, solid phase distribution, and speciation of Sb in soils and in digestive fluids. Chemosphere, 74, 711–716. doi:10.1016/j.chemosphere.2008.09.088.

    Article  CAS  Google Scholar 

  • Deschamps, E., Weidler, P. G., Friedrich, F., Weiss, C., & Diabaté, S. (2013). Characterization of indoor dust from Brazil and evaluation of the cytotoxicity in A549 lung cells. Environmental Geochemistry and Health, 36, 225–233. doi:10.1007/s10653-013-9560-9.

    Article  Google Scholar 

  • Fenech, M. (2007). Cytokinesis-block micronucleus cytome assay. Nature Protocols, 2, 1084–1104. doi:10.1038/nprot.2007.77.

    Article  CAS  Google Scholar 

  • García-Lestón, J., Méndez, J., Pásaro, E., & Laffon, B. (2010). Genotoxic effects of lead: An updated review. Environment International, 36, 623–636. doi:10.1016/j.envint.2010.04.011.

    Article  Google Scholar 

  • Gebel, T. (1997). Arsenic and antimony: Comparative approach on mechanistic toxicology. Chemico-Biological Interactions, 107, 131–144. doi:10.1016/S0009-2797(97)00087-2.

    Article  CAS  Google Scholar 

  • Glorennec, P., Lucas, J.-P., Mandin, C., & Le Bot, B. (2012). French children’s exposure to metals via ingestion of indoor dust, outdoor playground dust and soil: Contamination data. Environment International, 45, 129–134. doi:10.1016/j.envint.2012.04.010.

    Article  CAS  Google Scholar 

  • González, N. V., Nikoloff, N., Soloneski, S., & Larramendy, M. L. (2011). A combination of the cytokinesis-block micronucleus cytome assay and centromeric identification for evaluation of the genotoxicity of dicamba. Toxicology Letters, 207, 204–212. doi:10.1016/j.toxlet.2011.09.013.

    Article  Google Scholar 

  • Granero, S., & Domingo, J. L. (2002). Levels of metals in soils of Alcalá de Henares, Spain. Human health risks. Environment International, 28, 159–164. doi:10.1016/S0160-4120(02)00024-7.

    Article  CAS  Google Scholar 

  • Gron, C., & Andersen, L. (2003). Human bioaccessibility of heavy metals and PAH from soil. Danish Environmental Protection Agency (Environmental Project No. 840).

  • Iarmarcovai, G., Botta, A., & Orsière, T. (2006). Number of centromeric signals in micronuclei and mechanisms of aneuploidy. Toxicology Letters, 166, 1–10. doi:10.1016/j.toxlet.2006.05.015.

    Article  CAS  Google Scholar 

  • Ibanez, Y., Le Bot, B., & Glorennec, P. (2010). House-dust metal content and bioaccessibility: A review. European Journal of Mineralogy, 22, 629–637. doi:10.1127/0935-1221/2010/0022-2010.

    Article  CAS  Google Scholar 

  • INVS, Institut de Veille Sanitaire. (2012). Quantités de terre et poussières ingérées par un enfant de moins de 6 ans et bioaccessibilité des polluants. Etats des connaissances et propositions.

  • Jolliffe, I. (2014). Principal component analysis. In Wiley StatsRef: Statistic Reference Online. John Wiley & Sons, Ltd. doi:10.1002/9781118445112.stat06472.

  • Kang, Y., Cheung, K. C., & Wong, M. H. (2011). Mutagenicity, genotoxicity and carcinogenic risk assessment of indoor dust from three major cities around the Pearl River Delta. Environment International, 37, 637–643. doi:10.1016/j.envint.2011.01.001.

    Article  CAS  Google Scholar 

  • Kang, Y., Yin, Y., Man, Y., Li, L., Zhang, Q., Zeng, L., et al. (2013). Bioaccessibility of polychlorinated biphenyls in workplace dust and its implication for risk assessment. Chemosphere, 93, 924–930. doi:10.1016/j.chemosphere.2013.05.057.

    Article  CAS  Google Scholar 

  • Karlsson, H. L., Di Bucchianico, S., Collins, A. R., & Dusinska, M. (2015). Can the comet assay be used reliably to detect nanoparticle-induced genotoxicity? Environmental and Molecular Mutagenesis, 56, 82–96. doi:10.1002/em.21933.

    Article  CAS  Google Scholar 

  • Kirsch-Volders, M., Sofuni, T., Aardema, M., Albertini, S., Eastmond, D., Fenech, M., et al. (2003). Report from the in vitro micronucleus assay working group. Mutation Research, 540, 153–163.

    Article  CAS  Google Scholar 

  • Kurt-Karakus, P. B. (2012). Determination of heavy metals in indoor dust from Istanbul, Turkey: Estimation of the health risk. Environment International, 50, 47–55. doi:10.1016/j.envint.2012.09.011.

    Article  CAS  Google Scholar 

  • Lee, J.-C., Son, Y.-O., Pratheeshkumar, P., & Shi, X. (2012). Oxidative stress and metal carcinogenesis. Free Radical Biology and Medicine, 53, 742–757. doi:10.1016/j.freeradbiomed.2012.06.002.

    Article  CAS  Google Scholar 

  • Lin, Y., Fang, F., Wang, F., & Xu, M. (2015). Pollution distribution and health risk assessment of heavy metals in indoor dust in Anhui rural, China. Environmental Monitoring and Assessment, 187, 4763. doi:10.1007/s10661-015-4763-4.

    Google Scholar 

  • Lisiewicz, M., Heimburger, R., & Golimowski, J. (2000). Granulometry and the content of toxic and potentially toxic elements in vacuum-cleaner collected, indoor dusts of the city of Warsaw. Science of the Total Environment, 263, 69–78. doi:10.1016/S0048-9697(00)00667-7.

    Article  CAS  Google Scholar 

  • Maertens, R. M., Yang, X., Zhu, J., Gagne, R. W., Douglas, G. R., & White, P. A. (2008). Mutagenic and carcinogenic hazards of settled house dust I: Polycyclic aromatic hydrocarbon content and excess lifetime cancer risk from preschool exposure. Environmental Science and Technology, 42, 1747–1753. doi:10.1021/es702449c.

    Article  CAS  Google Scholar 

  • Mateuca, R., Lombaert, N., Aka, P. V., Decordier, I., & Kirsch-Volders, M. (2006). Chromosomal changes: Induction, detection methods and applicability in human biomonitoring. Biochimie, Facets of Environmental Nuclear Toxicology, 88, 1515–1531. doi:10.1016/j.biochi.2006.07.004.

    CAS  Google Scholar 

  • Mohmand, J., Eqani, S. A. M. A. S., Fasola, M., Alamdar, A., Mustafa, I., Ali, N., et al. (2015). Human exposure to toxic metals via contaminated dust: Bio-accumulation trends and their potential risk estimation. Chemosphere, 132, 142–151. doi:10.1016/j.chemosphere.2015.03.004.

    Article  CAS  Google Scholar 

  • Natarajan, A. T., Boei, J. J., Darroudi, F., Van Diemen, P. C., Dulout, F., Hande, M. P., et al. (1996). Current cytogenetic methods for detecting exposure and effects of mutagens and carcinogens. Environmental Health Perspectives, 104, 445–448.

    Article  CAS  Google Scholar 

  • Niu, J., Rasmussen, P. E., Hassan, N. M., & Vincent, R. (2010). Concentration distribution and bioaccessibility of trace elements in nano and fine urban airborne particulate matter: Influence of particle size. Water, Air, and Soil pollution, 213, 211–225. doi:10.1007/s11270-010-0379-z.

    Article  CAS  Google Scholar 

  • Oomen, A., Hack, A., Minekus, M., Zeijdner, E., Cornelis, C., Schoeters, G., et al. (2002). Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environmental Science and Technology, 36, 3326–3334.

    Article  CAS  Google Scholar 

  • Patinha, C., Reis, A. P., Dias, A. C., Abduljelil, A. A., Noack, Y., Robert, S., et al. (2014). The mobility and human oral bioaccessibility of Zn and Pb in urban dusts of Estarreja (N Portugal). Environmental Geochemistry and Health, 37, 115–131. doi:10.1007/s10653-014-9634-3.

    Article  Google Scholar 

  • Pohren, R. D. S., Rocha, J. A. V., Leal, K. A., & Vargas, V. M. F. (2012). Soil mutagenicity as a strategy to evaluate environmental and health risks in a contaminated area. Environment International, 44, 40–52. doi:10.1016/j.envint.2012.01.008.

    Article  CAS  Google Scholar 

  • Rasmussen, P. (2004). Can metal concentrations in indoor dust be predicted from soil geochemistry? Canadian Journal of Analytical Sciences and Spectroscopy, 49, 166–174.

    CAS  Google Scholar 

  • Rasmussen, P. E., Levesque, C., Chénier, M., Gardner, H. D., Jones-Otazo, H., Petrovic, S. (2013). Canadian house dust study: Population-based concentrations, loads and loading rates of arsenic, cadmium, chromium, copper, nickel, lead, and zinc inside urban homes. Science if the Total Environent, 443, 520–529. doi:10.1016/j.scitotenv.2012.11.003.

    Article  CAS  Google Scholar 

  • Rasmussen, P. E., Subramanian, K. S., & Jessiman, B. J. (2001). A multi-element profile of house dust in relation to exterior dust and soils in the city of Ottawa, Canada. Science of the Total Environment, 267, 125–140. doi:10.1016/S0048-9697(00)00775-0.

    Article  CAS  Google Scholar 

  • Reis, A. P., Costa, S., Santos, I., Patinha, C., Noack, Y., Wragg, J., et al. (2015). Investigating relationships between biomarkers of exposure and environmental copper and manganese levels in house dusts from a Portuguese industrial city. Environmental Geochemistry and Health,. doi:10.1007/s10653-015-9724-x.

    Google Scholar 

  • Reis, A. P., Patinha, C., Noack, Y., Robert, S., & Dias, A. C. (2014). Assessing human exposure to aluminium, chromium and vanadium through outdoor dust ingestion in the Bassin Minier de Provence, France. Environmental Geochemistry and Health, 36, 303–317. doi:10.1007/s10653-013-9564-5.

    Article  CAS  Google Scholar 

  • Roney, N., Osierb, M., Paikoff, S. J., Smith, C. V., Williamsa, M., & de Rosa, C. T. (2006). ATSDR evaluation of the health effects of zinc and relevance to public health. Toxicology and Industrial Health, 22, 423–493.

    Article  CAS  Google Scholar 

  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. Experientia Supplementum, 101, 133–164. doi:10.1007/978-3-7643-8340-4_6.

    Article  Google Scholar 

  • Tice, R. R., Agurell, E., Anderson, D., Burlinson, B., Hartmann, A., Kobayashi, H., et al. (2000). Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing. Environmental and Molecular Mutagenesis, 35, 206–221.

    Article  CAS  Google Scholar 

  • Tulve, N. S., Suggs, J. C., McCurdy, T., Cohen Hubal, E. A., & Moya, J. (2002). Frequency of mouthing behavior in young children. Journal of Exposure Analysis and Environmental Epidemiology, 12, 259–264.

    Article  Google Scholar 

  • Turner, A., & Simmonds, L. (2006). Elemental concentrations and metal bioaccessibility in UK household dust. Science of the Total Environment, 371, 74–81. doi:10.1016/j.scitotenv.2006.08.011.

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency. (2000). TRW recommendations for sampling analysis of soil at lead (Pb) sites.

  • U.S. Environmental Protection Agency. (2008). Child-specific exposure factors handbook (No. EPA/600/R-06/096F). National Center for Environmental Assessment.

  • Wang, W., Wu, F.-Y., Huang, M.-J., Kang, Y., Cheung, K. C., & Wong, M. H. (2013a). Size fraction effect on phthalate esters accumulation, bioaccessibility and in vitro cytotoxicity of indoor/outdoor dust, and risk assessment of human exposure. Journal of Hazardous Materials, 261, 753–762. doi:10.1016/j.jhazmat.2013.04.039.

    Article  CAS  Google Scholar 

  • Wang, W., Wu, F., Zheng, J., & Wong, M. H. (2013b). Risk assessments of PAHs and Hg exposure via settled house dust and street dust, linking with their correlations in human hair. Journal of Hazardous Materials, 263(2), 627–637. doi:10.1016/j.jhazmat.2013.10.023.

    Article  CAS  Google Scholar 

  • WHO. (1996). Trace elements in human nutrition and health (No. 532). World Health Organization, Geneva, Switzerland.

  • Wragg, J., Cave, M., Basta, N., Brandon, E., Casteel, S., Denys, S., et al. (2011). An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil. Science of the Total Environment, 409, 4016–4030. doi:10.1016/j.scitotenv.2011.05.019.

    CAS  Google Scholar 

  • Zhong, B.-Z., Gu, Z.-W., Wallace, W. E., Whong, W.-Z., & Ong, T. (1994). Genotoxicity of vanadium pentoxide in Chinese hamster V79 cells. Mutation Research/Genetic Toxicology, 321, 35–42. doi:10.1016/0165-1218(94)90118-X.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this research was provided by the Labex DRIIHM, Réseau des Observatoires Hommes—Millieux—Centre National de la Recherche Scientifique (ROHM–CNRS) and ECosystèmes COntinentaux et Risques EnVironnementaux (ECCOREV). This work has also been carried out thanks to the support of the A*MIDEX project “CREER” (n° ANR-11-IDEX-0001-02) funded by the “Investissements d’Avenir” French Government program, managed by the French National Research Agency (ANR). The authors want to express their gratitude to Jocelyne Pompili for her technical help, Kankoé Sallah for his statistical analysis performed, as well as Chiara Uboldi for her precious help to write this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Orsière.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10653_2016_9888_MOESM1_ESM.tif

Box and whisker plots of the bioaccessible fraction (BAF) estimated for 16 PHEs using the UBM protocol in the 19 houses sampled by Reis et al. (2015) (TIFF 59 kb)

Supplementary material 2 (DOCX 23 kb)

Supplementary material 3 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plumejeaud, S., Reis, A.P., Tassistro, V. et al. Potentially harmful elements in house dust from Estarreja, Portugal: characterization and genotoxicity of the bioaccessible fraction. Environ Geochem Health 40, 127–144 (2018). https://doi.org/10.1007/s10653-016-9888-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-016-9888-z

Keywords

Navigation