Skip to main content
Log in

Bioaccessibility of selenium after human ingestion in relation to its chemical species and compartmentalization in maize

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Selenium is a micronutrient needed by all living organisms including humans, but often present in low concentration in food with possible deficiency. From another side, at higher concentrations in soils as observed in seleniferous regions of the world, and in function of its chemical species, Se can also induce (eco)toxicity. Root Se uptake was therefore studied in function of its initial form for maize (Zea mays L.), a plant widely cultivated for human and animal food over the world. Se phytotoxicity and compartmentalization were studied in different aerial plant tissues. For the first time, Se oral human bioaccessibility after ingestion was assessed for the main Se species (SeIV and SeVI) with the BARGE ex vivo test in maize seeds (consumed by humans), and in stems and leaves consumed by animals. Corn seedlings were cultivated in hydroponic conditions supplemented with 1 mg L−1 of selenium (SeIV, SeVI, Control) for 4 months. Biomass, Se concentration, and bioaccessibility were measured on harvested plants. A reduction in plant biomass was observed under Se treatments compared to control, suggesting its phytotoxicity. This plant biomass reduction was higher for selenite species than selenate, and seed was the main affected compartment compared to control. Selenium compartmentalization study showed that for selenate species, a preferential accumulation was observed in leaves, whereas selenite translocation was very limited toward maize aerial parts, except in the seeds where selenite concentrations are generally high. Selenium oral bioaccessibility after ingestion fluctuated from 49 to 89 % according to the considered plant tissue and Se species. Whatever the tissue, selenate appeared as the most human bioaccessible form. A potential Se toxicity was highlighted for people living in seleniferous regions, this risk being enhanced by the high Se bioaccessibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asher, C. J., Butler, G. W., & Peterson, P. J. (1977). Selenium transport in root systems of tomato. Journal of Experimental Botany, 28(103), 279–291.

    Article  CAS  Google Scholar 

  • Austruy, A., Shahid, M., Xiong, T., Castrec, M., Payre, V., Niazi, N. K., & Dumat, C. (2014). Mechanisms of metal-phosphates formation in the rhizosphere soils of pea and tomato: Environmental and sanitary consequences. Journal of Soils and Sediments, 14, 666–678.

    Article  Google Scholar 

  • Avoscan, L. (2007). Etude de la résistance de Cupriavidus metallidurans CH34 aux oxyanions sélénite et séléniate: Accumulation, localisation et transformation du sélénium. Thèse de doctorat d’université. Joseph Fourier: Université Grenoble 1, 244 p.

  • Bañuelos, G. S., Arroyo, I., Pickering, I. J., In, S., & Freeman, J. L. (2015). Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata. Food Chemistry, 166, 603–608.

    Article  Google Scholar 

  • Banuelos, G. S., Terry, N., Zayed, A., & Wu, L. (1995). Managing high soil Se with phytoremediation. In G. E. Schuman & G. F. Vance (Eds.), Selenium, mining, reclamation, and environmental impact. Proceedings of the 12th Annual Meeting of the American Society for Surface Mining and Reclamation. American Society for Surface Mining and Reclamation, pp. 394–405.

  • Benton, D., & Cook, R. (1990). Selenium supplementation improves mood in a double-blind crossover trial. Psychopharmacology, 102(4), 549–550.

    Article  CAS  Google Scholar 

  • Bhatia, P., Aureli, F., D’Amato, M., Prakash, R., Cameotra, S. S., Nagaraja, T. P., & Cubadda, F. (2013). Selenium bioaccessibility and speciation in biofortified Pleurotus mushrooms grown on selenium-rich agricultural residues. Food Chemistry, 140(1–2), 225–230.

    Article  CAS  Google Scholar 

  • Cabañero, A. I., Madrid, Y., & Cámara, C. (2004). Selenium and mercury bioaccessibility in fish samples: An in vitro digestion method. Analytica Chimica Acta, 526(1), 51–61.

    Article  Google Scholar 

  • Carter, D. L., & Brown, M. J. (1968). Selenium concentrations in forage on some high northwestern range. Journal of Range Management, 23, 234–238.

    Article  Google Scholar 

  • Cave, M., Wragg, J., Klinck, B., Grön, C., Oomen, T., Van de Wiele, T., et al. (2006). Preliminary assessment of a unified bioaccessibility method for Arsenic in soils. International conference in Epidemiology and Environmental Exposure. Paris, 2–6 September 2006.

  • Chilimba, A. D. C., Young, S. D., Black, C. R., Rogerson, K. B., Ander, E. L., Watts, M. J., et al. (2011). Maize grain and soil surveys reveal suboptimal dietary selenium intake is widespread in Malawi. Scientific Reports, 72, 1–9.

    Google Scholar 

  • CNMI (Cámara Nacional del Maíz Industrializado). (2001). Retrieved 16 de octubre, 2012, from http://www.cnmaiz.org.mx/camara.html.

  • Combs, G. F. (2000). Food system-based approaches to improving micronutrient nutrition: The case for selenium. Biofactors, 12, 39–43.

    Article  CAS  Google Scholar 

  • Combs, G. F. (2001). Selenium in global food systems. British Journal of Nutrition, 85, 517–547.

    Article  CAS  Google Scholar 

  • Cui, Z., Chen, X., & Zhang, F. (2010). Current nitrogen management status and measures to improve the intensive wheat–maize system in China. Ambio, 39(6), 376–384.

    Article  CAS  Google Scholar 

  • Cui, Y. J., Zhu, Y. G., Zhai, R. H., Chen, D. Y., Huang, Y. Z., Qiu, Y., et al. (2004). Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environment International, 30(6), 785–791.

    Article  CAS  Google Scholar 

  • De Souza, M. P., Pilon-Smits, E. A. H., Lytle, C. M., Hwang, S., Tai, J., Honma, T. S. U., et al. (1998). Rate-limiting steps in selenium assimilation and volatilization by Indian Mustard. Plant Physiology, 117, 1487–1494.

    Article  Google Scholar 

  • Denys, S., Tack, K., Caboche, J., & Delalain, P. (2009). Bioaccessibility, solid phase distribution, and speciation of Sb in soils and in digestive fluids. Chemosphere, 74(5), 711–716.

    Article  CAS  Google Scholar 

  • Eckel, R. H., Alberti, K. G. M. M., Grundy, S. M., & Zimmet, P. Z. (2010). The metabolic syndrome. Lancet, 375(9710), 181–183.

    Article  Google Scholar 

  • Efsa, Q. (2008). La levure enrichie en sélénium ajoutée à des fins nutritionnelles en tant que source de sélénium à des aliments destinés à des usages nutritionnels particuliers et à des aliments (y compris des compléments alimentaires) destinés à la population générale.

  • Eiche, E., Bardelli, F., Nothstein, A. K., Charlet, L., Göttlicher, J., Steininger, R., et al. (2015). Selenium distribution and speciation in plant parts of wheat (Triticum aestivum) and Indian mustard (Brassica juncea) from a seleniferous area of Punjab, India. Science of the Total Environment, 505, 952–961.

    Article  CAS  Google Scholar 

  • Eurola, M., Ekholm, P., Ylinen, M., Koivistoinen, P., & Varo, P. (1990). Effects of selenium fertilization on the selenium content of cereal grains, flour and bread produced in Finland. Cereal Chemistry, 67, 2–5.

    Google Scholar 

  • FAO. (2005). Food and Agriculture Organization of United Nations. Retrieved 23 March, 2012, from www.fao.org/home/en/.

  • FAOSTAT. (2004). Food and Agriculture Organization of the United Nations. Retrieved 13 de mayo http://faostat.fao.org/site/613/DesktopDefault.aspx?PageID=613#ancor.

  • Ferrand, E., Dumat, C., Leclerc-Cessac, E., & Benedetti, M. F. (2006). Phytoavailability of zirconium in relation to its initial added form and soil characteristics. Plant and Soil, 287(1–2), 313–325.

    Article  CAS  Google Scholar 

  • Foucault, Y., Lévêque, T., Xiong, T., Schreck, E., Austruy, A., Shahid, M., et al. (2013). Green manure plants for remediation of soils polluted by metals and metalloids: Ecotoxicity and human bioavailability assessment. Chemosphere, 93(7), 1430–1435.

    Article  CAS  Google Scholar 

  • FSCJ: Food Safety Commission of Japan. (2012). Risk assessment report—chemicals and contaminants FS/946/2012.

  • Gissel-Nielsen, G., Gupta, U. C., Lamand, M., & Westermarck, T. (1984). Selenium in soils and plants and its importance in livestock and human nutrition. Advances in Agronomy, 37, 397–460.

    Article  CAS  Google Scholar 

  • Hintze, K. J., Lardy, G. P., Marchello, M. J., & Finley, J. W. (2001). Areas with high concentrations of selenium in the soil and forage produce beef with enhanced concentrations of selenium. Journal of Agricultural and Food Chemistry, 49(2), 1062–1067.

    Article  CAS  Google Scholar 

  • Hopper, J. L., & Parker, D. R. (1999). Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulfate. Plant and Soil, 1937, 199–207.

    Article  Google Scholar 

  • Irons, R., Carlson, B. A., Hatfield, D. L., & Davis, C. D. (2006). Both selenoproteins and low molecular weight selenocompounds reduce colon cancer risk in mice with genetically impaired selenoprotein expression. The Journal of Nutrition, 136, 1311–1317.

    CAS  Google Scholar 

  • Kikkert, J., & Berkelaar, E. (2013). Plant uptake and translocation of inorganic and organic forms of selenium. Archives of Environmental Contamination and Toxicology, 65(2013), 458–465.

    Article  CAS  Google Scholar 

  • Killick, R., Eckley, I., & Haynes, K. (2014). Changepoint: An R package for changepoint analysis. R package version 1.1.5. http://CRAN.R-project.org/package=changepoint.

  • Kiremidjian-Schumacher, L., Roy, M., Wishe, H. I., Cohen, M. W., & Stotzky, G. (1994). Supplementation with selenium and human immune cell functions. Biological Trace Element Research, 41(1–2), 115–127.

    Article  CAS  Google Scholar 

  • Koivistoinen, P. (1980). Mineral element composition of Finnish foods: N, K, Ca, Mg, P, S, Fe, Cu, Mn, Zn, Mo, Co, Ni, Cr, F, Se, Si, Rb, Al, B, Br, Hg, As, Cd, Pb and ash. Acta Agriculturae Scandinavica, 22, 15–25.

    Google Scholar 

  • Koivistoinen, P., & Huttunen, J. K. (1986). Selenium in food and nutrition in Finland. An overview on research and action. Annals of Clinical Research, 18(1), 13–17.

    CAS  Google Scholar 

  • Kolmogorov, Y., Kovaleva, V., & Gonchar, A. (2000). Analysis of trace elements in scalp hair of healthy people, hyperplasia and breast cancer patients with XRF method. Nuclear Instruments & Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment, 448, 457–460.

    Article  CAS  Google Scholar 

  • Larsen, E. H., Lobinski, R., Burger-Meÿer, K., Hansen, M., Ruzik, R., Mazurowska, L., & Kik, C. (2006). Uptake and speciation of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate. Analytical and Bioanalytical Chemistry, 385, 1098–1108.

    Article  CAS  Google Scholar 

  • Läuchli, A. (1993). Selenium in plants: Uptake, functions, and environmental toxicity. Botanica Acta, 106, 455–468.

    Article  Google Scholar 

  • Lavu, R. V., Du Laing, G., Van de Wiele, T., Pratti, V. L., Willekens, K., Vandecasteele, B., & Tack, F. (2012). Fertilizing soil with selenium fertilizers: Impact on concentration, speciation, and bioaccessibility of selenium in leek (Allium ampeloprasum). Journal of Agriculture and Food Chemistry, 60, 10930–10935.

    Article  CAS  Google Scholar 

  • Lavu, R. V., Van de Wiele, T., Pratti, V. L., Tack, F., & Du Laing, G. (2013). Bioaccessibility and transformations of selenium in the human intestine: Selenium-enriched crops versus food supplements. In G. S. Bañuelos, Z. Q. Lin, & X. Yin (Eds.), Selenium in the environment and human health (pp. 44–47). CRC Press.

  • Le Stum, H. (2011). Association Générale des Producteurs de Blé et autres céréales. IOP Publishing AGPB. http://www.agpb.fr/ fr/chiffre/recolte_monde.asp. Accessed December 13, 2011.

  • Li, N., Gao, Z. D., Luo, D. G., Tang, X., Chen, D. F., & Hu, Y. H. (2007). Selenium level in the environment and the population of Zhoukoudian area, Beijing, China. Science of the Total Environment, 381, 105e111.

    Article  Google Scholar 

  • Li, H. F., McGrath, S. P., & Zhao, F. J. (2008). Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytologist, 178, 92–102.

    Article  CAS  Google Scholar 

  • Lintschinger, J., Fuchs, N., Moser, J., Kuehnelt, D., & Goessler, W. (2000). Selenium-enriched sprouts. A raw material for fortified cereal-based diets. Journal of Agricultural and Food Chemistry, 48(11), 5362–5368.

    Article  CAS  Google Scholar 

  • Longchamp, M., Angeli, N., & Castrec-Rouelle, M. (2013). Selenium uptake in Zea mays supplied with selenate or selenite under hydroponic conditions. Plant and Soil, 362(1–2), 107–117.

    Article  CAS  Google Scholar 

  • Longchamp, M., Castrec-Rouelle, M., Biron, P., & Bariac, T. (2015). Variations in the accumulation, localization and rate of metabolization of selenium in mature Zea mays 2 plants supplied with selenite or selenate. Food Chemistry, 182, 128–135.

    Article  CAS  Google Scholar 

  • Longnecker, M. P., Taylor, P. R., Levander, O. A., Howe, S. M., Veillon, C., McAdam, P. A., et al. (1991). Selenium in diet, blood, and toenails in relation to human health in a seleniferous area. American Journal of Clinical Nutrition, 53(5), 1288–1294.

    CAS  Google Scholar 

  • Lonso, I. N. A., Mara, Ä., & Lbarra, Y. O. M. A. (2004). Establishment of selenium uptake and species distribution in lupine, indian mustard, and sunflower plants. Journal of Agricultural and Food Chemistry, 52(4), 832–838.

    Article  Google Scholar 

  • Ma, W., Li, J., Ma, L., Wang, F., Sisák, I., Cushman, G., & Zhang, F. (2008). Nitrogen flow and use efficiency in production and utilization of wheat, rice, and maize in China. Agricultural Systems, 99(1), 53–63.

    Article  Google Scholar 

  • Marschner, H. (1995). Mineral nutrition of higher plants (2nd ed., pp. 89–95). London: Academic Press.

    Google Scholar 

  • Mayland, H. F., James, L. F., Panter, K. E., & Sonderegger, J. L. (1989). Selenium in seleniferous environments. Environmental Science Sociéty, 23, 15–50.

    CAS  Google Scholar 

  • Mekonen, S., Lachat, C., Ambelu, A., Steurbaut, W., Kolsteren, P., Jacxsens, L., et al. (2015). Risk of DDT residue in maize consumed by infants as complementary diet in southwest Ethiopia. Science of the Total Environment, 511, 454–460.

    Article  CAS  Google Scholar 

  • Mombo, S., Foucault, Y., Deola, F., Gaillard, I., Goix, S., Shahid, M., et al. (2015). Management of human health risk in the context of kitchen gardens polluted by lead and cadmium near a lead recycling company. Journal of Soils and Sediments. doi:10.1007/s11368-015-1069-7.

    Google Scholar 

  • Navarro-Alarcón, M., & López-Martínez, M. C. (2000). Essentiality of selenium in the human body: Relationship with different diseases. Science of the Total Environment, 249, 347–371.

    Article  Google Scholar 

  • Nielsen, G. G. (1968). Loss of selenium in drying and storage of agronomic plant species - DTU Orbit. Plant and Soil, 32, 242–245.

    Article  Google Scholar 

  • Nuss, E. T., & Tanumihardjo, S. A. (2011). Quality protein maize for Africa: Closing the protein inadequacy gap in vulnerable populations. Advances in Nutrition: An International Review Journal, 2(3), 217–224.

    Article  CAS  Google Scholar 

  • Okorie, A., Entwistle, J., & Dean, J. R. (2012). Estimation of daily intake of potentially toxic elements from urban street dust and the role of oral bioaccessibility testing. Chemosphere, 86(5), 460–467.

    Article  CAS  Google Scholar 

  • Oomen, A. G., Hack, A., Minekus, M., Zeijdner, E., Cornelis, C., Schoeters, G., et al. (2002). Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environmental Science and Technology, 36(15), 3326–3334.

    Article  CAS  Google Scholar 

  • Pierart, A., Shahid, M., Séjalon-Delmas, N., & Dumat, C. (2015). Antimony bioavailability: Knowledge and research perspectives for sustainable agricultures. Journal of Hazardous Materials (in press).

  • Qian, Y., Chen, C., Zhang, Q., Li, Y., Chen, Z., & Li, M. (2010). Concentrations of cadmium, lead, mercury and arsenic in Chinese market milled rice and associated population health risk. Food Control, 21(Suppl. 12), 1757–1763.

    Article  CAS  Google Scholar 

  • Qin, H., Zhu, J., Liang, L., Wang, M., & Su, H. (2013). The bioavailability of selenium and risk assessment for human selenium poisoning in high-Se areas, China. Environment International, 52, 66–74.

    Article  CAS  Google Scholar 

  • Rayman, M. P. (2000). The importance of selenium to human health. Lancet, 356(9225), 233–241.

    Article  CAS  Google Scholar 

  • Rayman, M. P. (2008). Food-chain selenium and human health: Emphasis on intake. The British Journal of Nutrition, 100, 254–268.

    CAS  Google Scholar 

  • Reilly, C. (1998). Selenium: A new entrant into the functional food arena. Trends in Food Science & Technology, 9, 114–118. doi:10.1016/S0924-2244(98)00027-2.

    Article  CAS  Google Scholar 

  • Rosas-Castor, J. M., Guzmán-Mar, J. L., Hernández-Ramírez, A., Garza-González, M. T., & Hinojosa-Reyes, L. (2014). Arsenic accumulation in maize crop (Zea mays): A review. Science of the Total Environment, 488–489, 176–187.

    Article  Google Scholar 

  • Shahid, M., Xiong, T., Masood, N., Leveque, T., Quenea, K., Austruy, A., & Dumat, C. (2014). Influence of plant species and phosphorus amendments on metal speciation and bioavailability in a smelter impacted soil: A case study of food-chain contamination. Journal of Soils and Sediments, 14, 655–665.

    Article  Google Scholar 

  • Sharma, R. K., Agrawal, M., & Marshall, F. M. (2009). Heavy metals in vegetables collected from production and market sites of a tropical urban area of India. Food and Chemical Toxicology, 47(3), 583–591.

    Article  CAS  Google Scholar 

  • Swartjes, F. A. (2011). Dealing with contaminated sites: From theory towards practical application (1st ed., p. 264). Berlin: Springer.

    Book  Google Scholar 

  • Terry, N., & Banuelos, G. S. (2012). Phytoremediation of contaminated soil and water (p. 408). Boca Raton: CRC Press.

    Google Scholar 

  • Uzu, G., Sauvain, J. J., Baeza-Squiban, A., Riediker, M., Sánchez Sandoval, H. M., Val, S., et al. (2011). In vitro assessment of the pulmonary toxicity and gastric availability of lead-rich particles from a recycling plant. Environmental Science and Technology, 45(18), 7888–7895.

    Article  CAS  Google Scholar 

  • Wang, S., Liang, D., Wang, D., Wei, W., Fu, D., & Lin, Z. (2012). Selenium fractionation and speciation in agriculture soils and accumulation in corn (Zea mays L.) under field conditions in Shaanxi Province, China. Science of the Total Environment, 427, 159–164.

    Article  Google Scholar 

  • Wang, D., Williams, B. A., Ferruzzi, M. G., & D’Arcy, B. R. (2013). Microbial metabolites, but not other phenolics derived from grape seed phenolic extract, are transported through differentiated Caco-2 cell monolayers. Food Chemistry, 138(2–3), 1564–1573.

    Article  CAS  Google Scholar 

  • World Health Organization, Food and Agriculture Organisation and International Atomic Energy Agency expert group. (1996). Selenium. In: WHO (Ed.), Trace elements in human nutrition and health (pp 105–122). Geneva: WHO.

  • Wragg, J., Cave, M., Basta, N., Brandon, E., Casteel, S., Denys, S., & Van de Wiele, T. (2011). An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil. Science of the Total Environment, 409(19), 4016–4030.

    CAS  Google Scholar 

  • Ximénez-Embún, P., Alonso, I., Madrid-Albarrán, Y., & Cámara, C. (2004). Establishment of selenium uptake and species distribution in lupine, indian mustard, and sunflower plants. Journal of Agricultural and Food Chemistry, 52, 832–838.

    Article  Google Scholar 

  • Xiong, T., Leveque, T., Austruy, A., Goix, S., Schreck, E., Dappe, V., et al. (2014a). Foliar uptake and metal(loid) bioaccessibility in vegetables exposed to particulate matter. Environmental Geochemistry and Health, 36, 897–909.

    Article  CAS  Google Scholar 

  • Xiong, T., Leveque, T., Shahid, M., Foucault, Y., Mombo, S., & Dumat, C. (2014b). Lead and cadmium phytoavailability and human bioaccessibility for vegetables exposed to soil or atmospheric pollution by process ultrafine particles. Americain Society of Agronomy., 43, 1593–1600.

    Google Scholar 

  • Yang, G., & Zhou, R. (1994). Further observations on the human maximum safe dietary selenium intake in a seleniferous area of China. Journal of Trace Elements and Electrolytes in Health and Disease, 8(3–4), 159–165.

    CAS  Google Scholar 

  • Yu, Y., Luo, L., Yang, K., & Zhang, S. (2011). Influence of mycorrhizal inoculation on the accumulation and speciation of selenium in maize growing in selenite and selenate spiked soils. Pedobiologia, 54(5), 267–272.

    Article  CAS  Google Scholar 

  • Zayed, A., Lytle, C. M., & Terry, N. (1998). Accumulation and volatilization of different chemical species of selenium by plants. Planta, 206(2), 284–292.

    Article  CAS  Google Scholar 

  • Zhai, F. Y., & Yang, X. G. (2006). Report on the situation of nutrition and health of Chinese residents: II. The status of diet and nutrient uptake in 2002. Beijing: People’s Medical Publishing House (in Chinese).

  • Zhang, H., Feng, X., Jiang, C., Li, Q., Liu, Y., & Gu, C. (2014). Understanding the paradox of selenium contamination in mercury mining areas: High soil content and low accumulation in rice. Environmental Pollution (Barking, Essex: 1987), 188, 27–36.

    Article  CAS  Google Scholar 

  • Zhang, Y., Pan, G., Chen, J., & Hu, Q. (2003). Uptake and transport of selenite and selenate by soybean seedlings of two genotypes. Plant and Soil, 253, 437–443.

    Article  CAS  Google Scholar 

  • Zhao, L., Cox, A. G., Ruzicka, J. A., Bhat, A. A., Zhang, W., & Taylor, E. W. (2000). Molecular modeling and in vitro activity of an HIV-1-encoded glutathione peroxidase. Proceedings of the National Academy of Sciences of the United States of America, 97(12), 6356–6361.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has received support from Gabon through A.N.B.G for the Ph.D. of Mombo S. Biron P and Bariac T. from iEES-UPMC are thanked for RUBIC5 access. This work has received financial supports from National Research Agency under reference ANR-12-0011-VBDU and the National Polytechnic Institute in Toulouse (INPT). The authors thank to Leigh Gebbie for English review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camille Dumat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mombo, S., Schreck, E., Dumat, C. et al. Bioaccessibility of selenium after human ingestion in relation to its chemical species and compartmentalization in maize. Environ Geochem Health 38, 869–883 (2016). https://doi.org/10.1007/s10653-015-9767-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-015-9767-z

Keywords

Navigation