Skip to main content

Advertisement

Log in

Assessing heavy-metal contamination and sources by GIS-based approach and multivariate analysis of urban–rural topsoils in Wuhan, central China

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Nine potentially harmful heavy metals (Cd, Co, Cr, Cu, Hg, Mn, Pb, Ni, and Zn) were measured in 477 topsoil samples collected from urban–rural areas in the city of Wuhan in order to identify their concentrations and possible sources, and characterize their spatial variability for risk assessment. Results showed that in most rural areas heavy-metal concentrations in soil were similar to their natural background values, but Cd, Cu, Hg, Pb, and Zn concentrations were relatively higher in densely populated districts and around industrial facilities. Multivariate analyses (correlation matrix, principal component analysis, and cluster analysis) indicated that Cd, Cu, Hg, Pb, and Zn were mainly derived from anthropogenic inputs, and Co, Cr, and Mn were controlled by natural source, whereas Ni appeared to be affected by both anthropogenic and natural sources. The result of risk assessment indicated that nearly 48% of the study area suffered from moderate to severe contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agricultural Chemistry Committee of China. (1983). Conventional methods of soil and agricultural chemistry analysis (pp. 70–165). Beijing: Science Press (in chinese).

    Google Scholar 

  • Angelone, M., Corrado, T., & Dowgiallo, G. (1995). Lead and cadmium distribution in urban soil and plants in the city of Rome: A preliminary study. In Proceedings of the third international conference on the biogeochemistry of trace elements (pp. 23–24).

  • Birke, M., & Rauch, U. (2000). Urban geochemistry: Investigations in the Berlin metropolitan area. Environmental Geochemistry and Health, 22, 233–248. doi:10.1023/A:1026554308673.

    Article  CAS  Google Scholar 

  • Bityukova, L., Shogenova, A., & Birke, M. (2000). Urban geochemistry: A study of element distributions in the soils of Tallinn (Estonia). Environmental Geochemistry and Health, 22, 173–193. doi:10.1023/A:1006754326260.

    Article  CAS  Google Scholar 

  • Bloemen, M. L., Markert, B., & Lieth, H. (1995). The distribution of Cd, Cu, Pb, and Zn in topsoils of Osnabrück in relation to land use. The Science of the Total Environment, 166, 137–148. doi:10.1016/0048-9697(95)04520-B.

    Article  CAS  Google Scholar 

  • Brümelis, G., Lapina, L., Nikodemus, O., & Tabors, G. (2002). Use of the O horizon of forest soils in monitoring metal deposition in latvia. Water, Air, and Soil Pollution, 135, 291–309. doi:10.1023/A:1014714111050.

    Article  Google Scholar 

  • Burt, R., Wilson, M. A., Mays, M. D., & Lee, C. W. (2003). Major and trace elements of selected pedons in USA. Journal of Environmental Quality, 32, 2109–2121.

    CAS  Google Scholar 

  • Chen, T., Liu, X., Zhu, M. Z., et al. (2008). Identification of trace element sources and associated risk assessment in vegetable soils of the urban–rural transitional area of Hangzhou, China. Environmental Pollution, 151, 67–78. doi:10.1016/534j.envpol.2007.03.004.

    Article  CAS  Google Scholar 

  • Chen, Q. F., Shan, B. Q., Yin, C. Q., & Hu, C. X. (2007). Two alternative modes for diffuse pollution control in Wuhan city zoo. Journal of Environmental Sciences (China), 19, 1067–1073. doi:10.1016/S1001-0742(07)60174-0.

    CAS  Google Scholar 

  • Chen, T. B., Zheng, Y. M., Lei, M., et al. (2005). Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere, 60, 542–551. doi:10.1016/j.chemosphere.2004.12.072.

    Article  CAS  Google Scholar 

  • Chirenje, T., Ma, L. Q., Reeves, M., & Szulczewski, M. (2003). Lead distribution in near-surface soils of two Florida cities: Gainesville and Miami. Geoderma, 119, 113–120. doi:10.1016/S0016-7061(03)00244-1.

    Article  CAS  Google Scholar 

  • Cui, Y., Zhu, Y.-G., Zhai, R., Huang, Y., Qiu, Y., & Liang, J. (2005). Exposure to metal mixtures and human health impacts in a contaminated area in Nanning, China. Environment International, 31, 784–790. doi:10.1016/j.envint.2005.05.025.

    Article  CAS  Google Scholar 

  • Culbard, E. B., Thornton, I., Watt, J., Wheatley, M., Moorcroft, S., & Thompson, M. (1988). Metal contamination in British urban dusts and soils. Journal of Environmental Quality, 17, 226–234.

    Article  CAS  Google Scholar 

  • Davies, B. E., & White, H. M. (1981). Trace element in vegetables grown on soils contaminated by base metal mining. Journal of Plant Nutrition, 3, 387–396. doi:10.1080/01904168109362846.

    Article  CAS  Google Scholar 

  • De Miguel, E., Martin-Dorado, A., & Mazadiego, L. F. (1998). The overlooked contribution of compost application to the trace element load in the urban soil of Madrid (Spain). The Science of the Total Environment, 215, 113–122. doi:10.1016/S0048-9697(98)00112-0.

    Article  Google Scholar 

  • De Temmerman, L., Vanongeval, L., Boon, W., & Hoenig, M. (2003). Heavy metal content of arable soil in northern Belgium. Water, Air, and Soil Pollution, 148, 61–76. doi:10.1023/A:1025498629671.

    Article  Google Scholar 

  • Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS based approach to identify heavy metal sources in soil. Environmental Pollution, 114, 313–324. doi:10.1016/S0269-7491(00)00243-8.

    Article  CAS  Google Scholar 

  • Folinsbee, L. J. (1993). Human health effects of air pollution. Environmental Health Perspectives, 100, 45–46. doi:10.2307/3431520.

    Article  CAS  Google Scholar 

  • Gallego, J. L. R., Ordonez, A., & Loredo, J. (2002). Investigation of trace element sources from an industrialized area (Aviles, northern Spain) using multivariate statistical methods. Environment International, 27, 589–596. doi:10.1016/S0160-4120(01)00115-5.

    Article  CAS  Google Scholar 

  • Healy, M. A., Harrison, P. G., Aslam, M., Davis, S. S., & Wilson, C. G. (1982). Lead sulphide and traditional preparations: Routes for ingestion, solubility and reactions in gastric fluid. Journal of Clinical and Hospital Pharmacy, 7, 169–173.

    CAS  Google Scholar 

  • Hooker, P. J., & Nathanail, C. P. (2006). Risk-based characterisation of lead in urban soils. Chemical Geology, 226, 340–351. doi:10.1016/j.chemgeo.2005.09.028.

    Article  CAS  Google Scholar 

  • Huang, S. S., Liao, Q. L., Hua, M., et al. (2007). Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong district, Jiangsu province. China Chemosphere, 67, 2148–2155.

    CAS  Google Scholar 

  • Kuo, T.-H., Chang, C.-F., Urba, A., & Kvietkus, K. (2006). Atmospheric gaseous mercury in northern Taiwan. The Science of the Total Environment, 368, 10–18. doi:10.1016/j.scitotenv.2005.10.017.

    Article  CAS  Google Scholar 

  • Lee, C. S., Li, X. D., Shi, W. Z., et al. (2006). Metal contamination in urban, suburban, and country park soils of Hong Kong: A study based on GIS and multivariate statistics. The Science of the Total Environment, 356, 45–61. doi:10.1016/j.scitotenv.2005.03.024.

    Article  CAS  Google Scholar 

  • Li, X., Poon, C. S., & Liu, P. S. (2001). Heavy metal contamination of urban soils and street dusts in Hong Kong. Applied Geochemistry, 16, 1361–1368. doi:10.1016/S0883-2927(01)00045-2.

    Article  CAS  Google Scholar 

  • Li, J., Xie, Z. M., Xu, J. M., Ye, L. J., & Liu, X. M. (2003). Evaluation on environmental quality of heavy metals in vegetable plantation soils in the suburb of Hangzhou. Ecology & Environment, 12(3), 277–280 (in chinese).

    Google Scholar 

  • Liu, H. L., Li, L. Q., Yin, C. Q., & Shan, B. Q. (2008). Fraction distribution and risk assessment of heavy metals in sediments of Moshui lake. Journal of Environmental Sciences (China), 20, 390–397. doi:10.1016/S1001-0742(08)62069-0.

    CAS  Google Scholar 

  • Madrid, L., Diaz-Barrientos, E., Reinoso, R., & Madrid, F. (2004). Metals in urban soils of Sevilla: Seasonal changes and relations with other soil components and plant contents. European Journal of Soil Science, 55(2), 209. doi:10.1046/j.1365-2389.2004.00589.x.

    Article  CAS  Google Scholar 

  • Manta, D. S., Angelone, M., Bellanca, A., Neri, R., & Sprovieri, M. (2002). Heavy metals in urban soils: A case study from the city of Palermo (Sicily), Italy. The Science of the Total Environment, 300, 229–243. doi:10.1016/S0048-9697(02)00273-5.

    Article  CAS  Google Scholar 

  • Mesilio, L., Farago, M. E., & Thornton, I. (2003). Reconnaissance soil geochemical survey of Gibraltar. Environmental Geochemistry and Health, 25, 1–8. doi:10.1023/A:1021232412519.

    Article  CAS  Google Scholar 

  • Micó, C., Recatalá, L., Peris, M., & Sánchez, J. (2006). Assessing heavy metal sources in agricultural soils of an European mediterranean area by multivariate analysis. Chemosphere, 65, 863–872. doi:10.1016/j.chemosphere.2006.03.016.

    Article  CAS  Google Scholar 

  • Mielke, H. W., Blake, B., Burroughs, S., & Hassinger, N. (1984). Urban lead levels in Minneapolis: The case of the Hmong children. Environment Research, 34, 64–76. doi:10.1016/0013-9351(84)90076-8.

    Article  CAS  Google Scholar 

  • Ministry of Health of China. (2005). Maximum levels of contaminants in food, GB 2762-2005.

  • Nakagawa, R., & Hiromoto, M. (1997). Geographical distribution and background levels of total mercury in air in Japan and neighbouring countries. Chemosphere, 34, 801–806. doi:10.1016/S0045-6535(97)00008-8.

    Article  CAS  Google Scholar 

  • Nan, Z., Zhao, C., Jijun, L., Chen, F., & Sun, W. (2002). Relation between soil properties and selected heavy metal concentration in spring wheat (Triticum aestivum L.) grown in contaminated soil. Water, Air, and Soil Pollution, 133, 205–213. doi:10.1023/A:1012962604095.

    Article  CAS  Google Scholar 

  • Odewande, A. A., & Abimbola, A. F. (2008). Contamination indices and heavy metal concentrations in urban soil of Ibadan metropolis, southwestern Nigeria. Environmental Geochemistry and Health, 30, 243–254. doi:10.1007/s10653-007-9112-2.

    Article  CAS  Google Scholar 

  • Paterson, E., Sanka, M., & Clark, L. (1996). Urban soils as pollutant sinks—a case study from Aberdeen, Scotland. Applied Geochemistry, 11(1–2), 129–131. doi:10.1016/0883-2927(95)00081-X.

    Article  CAS  Google Scholar 

  • Pfeiffer, E. M., Freytag, J., Scharpenseel, H. W., Miehlich, G., & Vicente, V. (1988). Trace elements and heavy metals in soils and plants of the southeast Asian metropolis metro manila and of rice cultivation provinces in Luzon, Philippines. Hamburger Bodenkundliche Arbeiten, 11, 264.

    Google Scholar 

  • Raghunath, R., Tripathi, R. M., Kumar, A. V., Sathe, A. P., Khandekar, R. N., & Nambi, K. S. V. (1999). Assessment of Pb, Cd, Cu, and Zn exposures of 6 to 10-year-old children in Mumbai. Environmental Research, 80, 215–221. doi:10.1006/enrs.1998.3919.

    Article  CAS  Google Scholar 

  • Sánchez-Camazano, M., Sa′nchez-Mart′ın, M. J., & Lorenzo, L. F. (1994). Lead and cadmium in soils and vegetables from urban gardens of Salamanca (Spain). The Science of the Total Environment, 146–147, 163–168.

    Article  Google Scholar 

  • State Development Center for Green-Food of China. (2000). Environmental technical terms for green food production area (NY/T391-2000).

  • Takeda, A., Kimura, K., & Yamasaki, S. I. (2003). Analysis of 57 elements in Japanese soils, with special reference to soil group and agricultural use. Geoderma, 119, 291–307. doi:10.1016/j.geoderma.2003.08.006.

    Article  CAS  Google Scholar 

  • Thornton, I. (1991). Metal contamination of soils in urban areas. In P. Bullock & P. J. Gregory (Eds.), Soils in the urban environment (pp. 47–75). London: Blackwell.

    Chapter  Google Scholar 

  • USEPA. (1994). Guidance manual for the integrated exposure uptake biokinetic model for lead in children (IEUBK). Prepared by the technical review workgroup for lead for the office of emergency an remedial response, USEPA. Publication number 9285.7-15-1 EPA 540-R-93-081 PB93-963510, with document production assistance from Envir. Criteria and Assessment Office, USEPA, Research Triangle Park.

  • Wang, W. T., Ma, Z. D., Zhao, B., & Gong, M. (2005). The concentration and distribution characteristics of mercury in Gedian area, Wuhan. Environmental Chemistry, 24(4), 454–458 (in chinese).

    CAS  Google Scholar 

  • Wang, D., Shi, X., & Wei, S. (2003). Accumulation and transformation of atmospheric mercury in soil. The Science of the Total Environment, 304, 209–214. doi:10.1016/S0048-9697(02)00569-7.

    Article  CAS  Google Scholar 

  • Wang, Y., Thornton, I., & Farago, M. (1997). Changes in lead concentrations in the home environment in Birmingham, England over the period 1984–1996. The Science of the Total Environment, 207, 149–156. doi:10.1016/S0048-9697(97)00264-7.

    Article  CAS  Google Scholar 

  • Webster, R., & Oliver, M. A. (2001). Geostatistics for environmental scientists (pp. 37–103). Chichester: Wiley.

    Google Scholar 

  • Wei, F. S., Chen, J. S., Wu, Y. Y., et al. (1990). Chinese soil element background values (pp. 330–395). Beijing: China Environmental Science Press (in chinese).

    Google Scholar 

  • Xintaras, C. (1992). Analysis paper: Impact of lead contaminated soil on public health. US Department of Health and Human Services Agency for Toxic Substances and Disease Registry, Atlanta.

  • Xiong, Z. (1998). Heavy metal contamination of urban soils and plants in relation to traffic in Wuhan city, China. Toxicological and Environmental Chemistry, 65, 31–39. doi:10.1080/02772249809358555.

    Article  CAS  Google Scholar 

  • Xue, Y., Shen, Z. G., & Zhou, D. M. (2005). Difference in heavy metal uptake between various vegetables and its mechanism. Soils, 37, 32–36 (in chinese).

    CAS  Google Scholar 

  • Yang, B. R., & Dong, G. X. (2004). The preliminary research about the mercury pollution in soil of Wuhan and its causes. Resources Environment & Engineering, 18(3), 54–59 (in chinese).

    Google Scholar 

  • Yay, O. D., Alagha, O., & Tuncel, G. (2008). Multivariate statistics to investigate metal contamination in surface soil. Journal of Environmental Management, 86, 581–594. doi:10.1016/j. jenvman.2006.12.032.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Geological Survey of China and Hubei Province Program “Multipurpose Geochemical Survey of Hubei Province” (200214200024) and Natural Science Foundation of China (40703023 and 40703020). The authors are greatly indebted to colleagues who participated in the fieldwork and data processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-yang Bi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, M., Wu, L., Bi, Xy. et al. Assessing heavy-metal contamination and sources by GIS-based approach and multivariate analysis of urban–rural topsoils in Wuhan, central China. Environ Geochem Health 32, 59–72 (2010). https://doi.org/10.1007/s10653-009-9265-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-009-9265-2

Keywords

Navigation