Skip to main content

Advertisement

Log in

Urban geochemistry: research strategies to assist risk assessment and remediation of brownfield sites in urban areas

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Urban geochemical maps of Wolverhampton and Nottingham, based on multielement analysis of surface soils, have shown distribution patterns of “total” metals concentrations relating to past and present industrial and domestic land use and transport systems. Several methods have been used to estimate the solubility and potential bioavailability of metals, their mineral forms and potential risks to urban population groups. These include sequential chemical extraction, soil pore water extraction and analysis, mineralogical analysis by scanning electron microscopy, source apportionment by lead isotope analysis and the development of models to predict metal uptake by homegrown vegetables to provide an estimate of risk from metal consumption and exposure. The results from these research strategies have been integrated with a geographical information system (GIS) to provide data for future land-use planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alker, S., Joy, V., Roberts, P., & Smith, N. (2000). The definition of brownfield. Journal of Environmental Plan Management, 43, 49–69.

    Article  Google Scholar 

  • Barker, K. (2003) Review of housing supply: securing our future housing needs. Interim report. UK HM treasury.

  • Breward, N., Williams, T. M., & Bradley, A. D. (1996). Comparison of alternative extraction methods for determining particulate metal speciation. Special Volume Applied Geochemistry, Kracow Conference Proceedings, 11(1–2), pp. 101–104.

    Google Scholar 

  • Bridges, D., McC Brown, M. J., Hooker, P. J. (1997). Wolverhampton urban environmental survey: an integrated geoscientific case study. British Geological Survey Technical Report, WE/95/49.

  • British Geological Survey Regional Geochemical Atlas series: Shetland (1978); Orkney (1978); South Orkney and Caithness (1979); Sutherland (1982); Hebrides (1983); Great Glen (1987); Argyll (1990); East Grampians (1991); Lake District (1992); Southern Scotland (1993); North-East England (1996), North-west England and North Wales (1997); Wales: Stream Water (1999); Wales: Stream sediment and soil (2000), Humber-Trent (2007); Central and Eastern England (in preparation).

  • Cotter-Howells, J., & Thornton, I. (1991). Sources and pathways of environmental lead to children in a Derbyshire mining village. Environmental Geochemistry and Health, 13, 127–135.

    Article  CAS  Google Scholar 

  • Croudace, I. W., & Cundy, A. B. (1995). Heavy metal and hydrocarbon pollution in sediments from Southampton water, southern England; a geochemical and isotopic study. Environmental Science and Technology, 29, 1288–1296.

    CAS  Google Scholar 

  • Davis, A., Ruby, M. V., & Bergstrom, P. D. (1994). Factors controlling lead bioavailability in the Butte mining district, Montana. Environmental Geochemsitry and Health, 16, 147–157.

    Article  CAS  Google Scholar 

  • DEFRA–EA (2002) Soil Guideline Values for Lead Contamination. R & D Publication SGV 10. R & D Dissemination Centre, WRc plc, Swindon, Wilts, UK.

  • Delves, H. T. (1988). Biomedical applications of ICPMS. Chemistry in Britian, 24, 1009–1012.

    CAS  Google Scholar 

  • Dybrowska, A., Farago, M. E., Valsami-Jones, E., & Thornton, I. (2005). Operationally defined associations of arsenic and copper from soil and mine waste in south-west England. Chemical Speciation and Bioavailability, 17, 147–160.

    Article  Google Scholar 

  • Farmer, J. G., Eades, L. J., & Graham, M. C. (1999). The lead content and isotopic composition of British Coals and their implications for past and present releases of lead to the UK environment. Environmental Geochemsitry and Health, 21, 257–272.

    Article  CAS  Google Scholar 

  • Ferguson, A. J., Breward, N., & Cauldwell, C. L. (1999) Baseline geochemical maps of part of the Nottingham Urban area. British Geological Survey Technical Report WP/99/14 (1999).

  • Fordyce, F. M., Brown, S. E., Ander, E. L., Rawlins, B. G., O’Donnell, K. E., Lister, T. R., et al. (2005). GSUE: urban geochemical mapping in Great Britain. Geochemistry Exploration Environment Analysis, 5, 325–336.

    Article  CAS  Google Scholar 

  • Gleyzes, C., Tellier, S., Sabrier, R., & Astruc, M. (2001). Arsenic characterisation in industrial soils by chemical extractions. Environmental Technology, 22, 27–38.

    Article  CAS  Google Scholar 

  • Gulson, B. L. (1986) Lead isotopes in mineral exploration. In: Developments in Economic Geology, vol. 23. Amsterdam: Elsevier, p. 245.

  • Gulson, B. L., Davis, J. J., Mizon, K. J., Krosch, M. J., Law, A. J., & Howarth, D. (1994). Lead bioavailability in the environment of children: blood lead levels can be elevated in a mining community. Archives of Environmental Health, 49, 326–331.

    CAS  Google Scholar 

  • Hodson, M. E., Valsami-Jones, E., Cotter-Howells, J. D., Dubbin, W. E., Kemp, A. J., Thornton, I., et al. (2001). Effect of bone meal (calcium phosphate) amendments on metal release from contaminated soils—a leaching column study. Environmental Pollution, 112(2), 233–243.

    Article  CAS  Google Scholar 

  • Hough, R. L., Breward, N., Young, S. D., Crout, N. M. J., Tye, A. M., Moir, A. M., et al. (2004). Assessing potential risk of heavy metal exposure from consumption of home-produced vegetables by urban populations. Environmental Health Perspectives, 112, 215–221.

    CAS  Google Scholar 

  • Johnson, C. C., & Breward, N. (2004). G-BASE Survey of the Environment. Commissiond Report CR/04/016 N. British Geological Survey, Keyworth, Notts, UK.

  • Kelly, J. P. (1996). Influence of geology and anthropogenic activity on the geochemistry of urban soils. Unpublished PhD Thesis, University of London.

  • Kelly, J., Thornton, I., & Simpson, P. R. (1996). Urban geochemistry: a study of the influence of anthropogenic activity on the heavy metal content of soils in traditionally industrial and non-industrial areas of Britian. Applied Geochemistry, 11, 363–370.

    Article  CAS  Google Scholar 

  • Langmi, H. W., & Watt, J. (2003). Evaluation of computer controlled SEM in the study of metal-contaminated soils. Mineralogical Magazine, 67(2), 219–231.

    Article  CAS  Google Scholar 

  • Li, X., Coles, B. J., Ramsey, M. H., & Thornton, I. (1995). Sequential extraction of soils for multi-element analysis by ICP-AES. Chemical Geology, 124, 109–123.

    Article  CAS  Google Scholar 

  • McGill, R. A. R., Pearce, J. M., Fortey, N. J., Watt, J., Ault, L., & Parrish, R. R. (2003). Contaminant source apportionment by PIMMS lead isotope analysis and SEM-image analysis. Environmental Geochemistry and Health, 25(1), 25–33.

    Article  CAS  Google Scholar 

  • Mielke, H. W., Smith, M. K., Gonzales, C. R., & Mielke, P. W. (1999). The urban environment and childrens health: soils as an intehrater of lead, zinc and cadmium in New Orleans, Louisiana, USA. Environmental Research, 80, 117–129.

  • Mielke, H. W., Powell, E., & Gonzales, C. R. (2007). New Orleans baseline soil maps of lead, arsenic and mercury: an applied toxicology approach for exposure prevention. Poster. Urban geochemistry and health conference, New Orleans, Louisianna, July 2007.

  • Moir, A. M. (1992). The Influence of Soil Factors and Atmospheric Deposition on the Cadmium and Lead Content of Vegetables. Unpublished PhD Thesis, University of London.

  • Moorbath, S. (1962). Lead isotope abundance studies on mineral occurrances in the British Isles and their geological significance. Philosophical Transactions of the Royal Society of London A, 254, 295–360.

    Article  CAS  Google Scholar 

  • ODPM (2001). Towards an urban renaissance. Executive Summary, Version 11. Urban Task Force, Office of the Deputy Prime Minister, London.

  • Ruby, M. V., Davis, A., Kempton, J. H., Drexler, J. W., & Bergstrom, P. D. (1992). Lead bioavailability: dissolution kinetics under stimulated gastric conditions. Environmental Science and Technology, 26, 1242–1248.

    Article  CAS  Google Scholar 

  • Ruby, M. V., Davis, A., Schoof, R., Eberle, S., & Sellstone, C. M. (1996). Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science and Technology, 30, 422–430.

    Article  CAS  Google Scholar 

  • Thums, C. R., & Farago, M. E. (2001). Investigating urban geochemistry using geographical information systems. Science Progress, 84, 183–204.

    Google Scholar 

  • Thums, C. R., Farago, M. E., & Thornton, I. (2008). Bioavailability of elements in brownfield soils in an urban area in the UK. Environmental Geochemistry and Health.

  • Tye, A. M., Young, S. D., Crout, M. J., Zhang, H., Preston, S., Barbosa-Jefferson, V. L., et al. (2003). Predicting the activity of Cd2+ and Zn2+ in soil pore water from the radio-labile metal fraction. Geochimica and Cosmochimica, 67, 375–385.

    Article  CAS  Google Scholar 

  • Webb, J. S., Thornton, I., Thompson, M., Howarth, R. J., & Lowenstein, P. L. (1978). Wolfson Geochemical Atlas of England and Wales (p. 70). Oxford: Clarendon.

    Google Scholar 

  • WHO (World Health Organisation), Safety Evaluation of Certain Food Additives and Contaminents. Fifty-fifth Meeting of the Joint FAO/WHO Expert Committee on Food Additives. Toxicological Monograph, WHO Food Additive Series No 46. World Health Organisation, Geneva (2001).

  • Young, S. D., Zhang, H., Tye, A. M., Maxted, A., Thums, C., & Thornton, I. (2006). Chacterizing the availability of metals in contaminated soils. 1. The solid phase: sequential extraction and isotopic dilution. Soil Use and Management, 21, 450–458.

    Article  Google Scholar 

Download references

Acknowledgments

The work was carried out with funding from the Natural Environment Research Council’s Urban Regeneration of the Environment programme (Grant No. GST/03/2251).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Thornton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thornton, I., Farago, M.E., Thums, C.R. et al. Urban geochemistry: research strategies to assist risk assessment and remediation of brownfield sites in urban areas. Environ Geochem Health 30, 565–576 (2008). https://doi.org/10.1007/s10653-008-9182-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-008-9182-9

Keywords

Navigation