Skip to main content
Log in

Modelling hydraulic jump using the bubbly two-phase flow method

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

Hydraulic jumps have complex flow structures, characterised by strong turbulence and large air contents. It is difficult to numerically predict the flows. It is necessary to bolster the existing computer models to emphasise the gas phase in hydraulic jumps, and avoid the pitfall of treating the phenomenon as a single-phase water flow. This paper aims to improve predictions of hydraulic jumps as bubbly two-phase flow. We allow for airflow above the free surface and air mass entrained across it. We use the Reynolds-averaged Navier–Stokes equations to describe fluid motion, the volume of fluid method to track the interface, and the k–ε model for turbulence closure. A shear layer is shown to form between the bottom jet flow and the upper recirculation flow. The key to success in predicting the jet flow lies in formulating appropriate bottom boundary conditions. The majority of entrained air bubbles are advected downstream through the shear layer. Predictions of the recirculation region’s length and air volume fraction within the layer are validated by available measurements. The predictions show a linear growth of the shear layer. There is strong turbulence at the impingement, and the bulk of the turbulence kinetic energy is advected to the recirculation region via the shear layer. The predicted bottom-shear-stress distribution, with a peak value upstream of the toe of the jump and a decaying trend downstream, is realistic. This paper reveals a significant transient bottom shear stress associated with temporal fluctuations of mainly flow velocity in the jump. The prediction method discussed is useful for modelling hydraulic jumps and advancing the understanding of the complex flow phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chanson H (2009) Current knowledge in hydraulic jumps and related phenomena. A survey of experimental results. Eur J Mech B Fluid 28(2):191–210. doi:10.1016/j.euromechflu.2008.06.004

    Article  Google Scholar 

  2. Chow VT (1959) Open-channel hydraulics. McGraw-Hill civil engineering series. McGraw-Hill, New York

    Google Scholar 

  3. Castro-Orgaz O, Hager WH (2009) Classical hydraulic jump: basic flow features. J Hydraul Res 47(6):744–754

    Article  Google Scholar 

  4. Rajaratnam N (1965) The hydraulic jump as a wall jet. J Hydraul Div 19:107–132

    Google Scholar 

  5. Murzyn F, Chanson H (2007) Free surface, bubbly flow and turbulence measurements in hydraulic jumps. University of Queensland, Division of Civil Engineering, St Lucia

    Google Scholar 

  6. Valiani A (1997) Linear and angular momentum conservation in hydraulic jump. J Hydraul Res 35(3):323–354. doi:10.1016/j.advwatres.2010.11.006

    Article  Google Scholar 

  7. Chanson H (2011) Bubbly two-phase flow in hydraulic jumps at large froude numbers. J Hydraul Eng 137(4):451–460. doi:10.1061/(ASCE)HY.1943-7900.0000323

    Article  Google Scholar 

  8. Murzyn F, Chanson H (2009) Two-phase gas-liquid flow properties in the hydraulic jump: review and perspectives. In: Martin S, Williams JR (eds) Multiphase flow research. Nova Science Publishers, New York, pp 497–542

  9. Gharangik AM, Chaudhry MH (1991) Numerical-simulation of hydraulic jump. J Hydraul Eng ASCE 117(9):1195–1211. doi:10.1061/(ASCE)0733-9429(1991)

    Article  Google Scholar 

  10. Castro-Orgaz O, Hager WH, Dey S (2015) Depth-averaged model for undular hydraulic jump. J Hydraul Res 53(3):351–363. doi:10.1080/00221686.2014.967820

    Article  Google Scholar 

  11. Khan AA, Steffler PM (1996) Physically based hydraulic jump model for depth-averaged computations. J Hydraul Eng ASCE 122(10):540–548. doi:10.1061/(ASCE)0733-9429(1996)

    Article  Google Scholar 

  12. Zhou JG, Stansby PK (1999) 2D shallow water flow model for the hydraulic jump. Int J Numer Meth Fluids 29(4):375–387. doi:10.1002/(SICI)1097-0363(19990228)29:4<375:AID-FLD790>3.0.CO;2-3

    Article  Google Scholar 

  13. Lopez D, Marivela R, Garrote L (2010) Smoothed particle hydrodynamics model applied to hydraulic structures: a hydraulic jump test case. J Hydraul Res 48:142–158. doi:10.1080/00221686.2010.9641255

    Article  Google Scholar 

  14. De Padova D, Mossa M, Sibilla S, Torti E (2013) 3D SPH modelling of hydraulic jump in a very large channel. J Hydraul Res 51(2):158–173. doi:10.1080/00221686.2012.736883

    Article  Google Scholar 

  15. Bayon A, Valero D, Garcia-Bartual R, Valles-Moran FJ, Lopez-Jimenez PA (2016) Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environ Modell Softw 80:322–335. doi:10.1016/j.envsoft.2016.02.018

    Article  Google Scholar 

  16. Bayon-Barrachina A, Lopez-Jimenez PA (2015) Numerical analysis of hydraulic jumps using OpenFOAM. J Hydroinform 17(4):662–678. doi:10.2166/hydro.2015.041

    Article  Google Scholar 

  17. Witt A, Gulliver J, Shen L (2015) Simulating air entrainment and vortex dynamics in a hydraulic jump. Int J Multiph Flow 72:165–180. doi:10.1016/j.ijmultiphaseflow.2015.02.012

    Article  Google Scholar 

  18. Chanson H, Brattberg T (2000) Experimental study of the air-water shear flow in a hydraulic jump. Int J Multiph Flow 26(4):583–607. doi:10.1016/S0301-9322(99)00016-6

    Article  Google Scholar 

  19. Hirt CW, Nichols BD (1981) Volume of fluid (Vof) method for the dynamics of free boundaries. J Comput Phys 39(1):201–225. doi:10.1016/0021-9991(81)90145-5

    Article  Google Scholar 

  20. Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface-tension. J Comput Phys 100(2):335–354. doi:10.1016/0021-9991(92)90240-Y

    Article  Google Scholar 

  21. Wilcox DC (2006) Turbulence modeling for CFD, 3rd edn. DCW Industries, La Cãnada, Calif

    Google Scholar 

  22. White FM (2006) Viscous fluid flow. McGraw-Hill series in mechanical engineering, 3rd edn. McGraw-Hill Higher Education, New York

    Google Scholar 

  23. Chung TJ (2002) Computational fluid dynamics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  24. Barth TJ, Jespersen DC, Ames Research Center (1989) The design and application of upwind schemes on unstructured meshes. American Institute of Aeronautics and Astronautics, Washington, DC. doi:10.2514/6.1989-366

    Book  Google Scholar 

  25. Rhie CM, Chow WL (1983) Numerical study of the turbulent-flow past an airfoil with trailing edge separation. AIAA J 21(11):1525–1532. doi:10.2514/3.8284

    Article  Google Scholar 

  26. Patankar SV (1980) Numerical heat transfer and fluid flow. Series in computational methods in mechanics and thermal sciences. McGraw-Hill, New York

    Google Scholar 

  27. Kucukali S, Chanson H (2007) Turbulence in hydraulic jumps: experimental measurements. University of Queensland, Division of Civil Engineering, St Lucia

    Google Scholar 

  28. Murzyn F, Mouaze D, Chaplin JR (2005) Optical fibre probe measurements of bubbly flow in hydraulic jumps. Int J Multiph Flow 31(1):141–154. doi:10.1016/j.ijmultiphaseflow.2004.09.004

    Article  Google Scholar 

  29. Shekari Y, Javan M, Eghbalzadeh A (2015) Effect of turbulence models on the submerged hydraulic jump simulation. J Appl Mech Tech Phy 56(3):454–463. doi:10.1134/S0021894415030153

    Article  Google Scholar 

  30. Huard MO, Li SS (2016) Air pressure drop in a penstock during the course of intake-gate closure. Can J Civ Eng 43(11):998–1006. doi:10.1139/cjce-2016-0321

    Article  Google Scholar 

  31. Hager WH, Bremen R, Kawagoshi N (1990) Classical hydraulic jump—length of roller. J Hydraul Res 28(5):591–608. doi:10.1080/00221689009499048

    Article  Google Scholar 

  32. Wang H, Chanson H (2015) Experimental study of turbulent fluctuations in hydraulic jumps. J Hydraul Eng. doi:10.1061/(ASCE)HY.1943-7900.0001010

    Google Scholar 

  33. Lin C, Hsieh SC, Lin IJ, Chang KA, Raikar RV (2012) Flow property and self-similarity in steady hydraulic jumps. Exp Fluids 53(5):1591–1616. doi:10.1007/s00348-012-1377-2

    Article  Google Scholar 

  34. Hager WH (1992) Energy dissipators and hydraulic jump. Springer, Dordrecht

    Book  Google Scholar 

  35. Chanson H (1996) Air bubble entrainment in free-surface turbulent shear flows. Academic Press, San Diego, CA

    Google Scholar 

  36. Chanson H (1995) Air entrainment in 2-dimensional turbulent shear flows with partially developed inflow conditions. Int J Multiph Flow 21(6):1107–1121. doi:10.1016/0301-9322(95)00048-3

    Article  Google Scholar 

  37. Hager WH (1993) Classical hydraulic jump—free-surface profile. Can J Civ Eng 20(3):536–539. doi:10.1139/l93-068

    Article  Google Scholar 

  38. Imai S, Nakagawa T (1992) On transverse variation of velocity and bed shear-stress in hydraulic jumps in a rectangular open channel. Acta Mech 93(1–4):191–203. doi:10.1007/BF01182584

    Article  Google Scholar 

  39. Chanson H (2000) Boundary shear stress measurements in undular flows: application to standing wave bed forms. Water Resour Res 36(10):3063–3076. doi:10.1029/2000WR900154

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the Natural Sciences and Engineering Research Council of Canada through Discovery Grants held by S. Li is acknowledged. Comments from three anonymous reviewers are useful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Samuel Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harada, S., Li, S.S. Modelling hydraulic jump using the bubbly two-phase flow method. Environ Fluid Mech 18, 335–356 (2018). https://doi.org/10.1007/s10652-017-9549-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-017-9549-5

Keywords

Navigation