Skip to main content

Advertisement

Log in

The Impact of Persistent Pain on Working Memory and Learning

  • Research into Practice
  • Published:
Educational Psychology Review Aims and scope Submit manuscript

Abstract

The study reviewed the evidence that persistent pain has the capacity to interrupt and consume working memory resources. It was argued that individuals with persistent pain essentially operate within a compromised neurocognitive paradigm of limited working memory resources that impairs task performance. Using cognitive load theory as a theoretical framework, the study investigated if multimedia materials could be used to support individuals with persistent pain. A 2 × 2 design was used where the first factor was the pain status of the participant (absence vs. presence for more than 6 months), and the second was instructional strategy (written + illustrations vs. written). Fifty-eight full-time teachers from two schools in New South Wales (Australia) were randomly assigned to an instructional strategy to learn about lightning formation. Participants that identified as experiencing pain for 6 or more months demonstrated clinically low levels of pain, but nevertheless performed significantly worse than pain-free participants on retention and transfer tests. For both pain and pain-free participants, there was a significant benefit in learning from multimedia instruction compared to a written text only strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abeare, C. A., Cohen, J. L., Axelrod, B. N., Leisen, J. C. C., Mosley-Williams, A., & Lumley, M. A. (2010). Pain, executive functioning, and affect in patients with rheumatoid arthritis. Clinical Journal of Pain, 26(8), 683–689.

    Google Scholar 

  • Apkarian, A. V., Hashmi, J. A., & Baliki, M. N. (2011). Pain and the brain: specificity and plasticity of the brain in clinical chronic pain. Pain, 152(Suppl. 3), S49–S64.

    Google Scholar 

  • Ayres, P. (2006). Using subjective measures to detect variations of intrinsic cognitive load within problems. Learning and Instruction, 16, 389–400.

    Google Scholar 

  • Baddeley, A. D. (1986). Working memory. New York: Oxford University Press.

    Google Scholar 

  • Baliki, M. N., Geha, P. Y., Apkarian, A. V., & Chialvo, D. R. (2008). Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. The Journal of Neuroscience, 28(6), 1398–1403.

    Google Scholar 

  • Beck, A. T., Rush, A. J., Shaw, B. F., & Emery, G. (1979). Cognitive therapy of depression. New York, NY: The Guilford Press.

    Google Scholar 

  • Beck, A. T., Steer, R. A., & Garbin, M. G. (1988). Psychometric properties of the Beck Depression Inventory: twenty-five years of evaluation. Clinical Psychology Review, 8(1), 77–100.

    Google Scholar 

  • Blankstein, U., Chen, J., Diamant, N. E., & Davis, K. D. (2010). Altered brain structure in irritable bowel syndrome: potential contributions of pre-existing and disease-driven factors. Gastroenterology, 138(5), 1783–1789.

    Google Scholar 

  • Bosma, F. K., & Kessels, R. P. C. (2002). Cognitive impairments, psychological dysfunction, and coping styles in patients with chronic whiplash syndrome. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 15(1), 56–65.

    Google Scholar 

  • Breivik, H., Collett, B., Ventafridda, V., Cohen, R., & Gallacher, D. (2006). Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. European Journal of Pain, 10(4), 287–333.

    Google Scholar 

  • Brunken, R., Steinbacher, S., Plass, J. L., & Leutner, D. (2002). Assessment of cognitive load in multimedia learning using dual-task methodology. Experimental Psychology, 49, 109–119.

    Google Scholar 

  • Brunken, R., Plass, J. L., & Leutner, D. (2003). Direct measurement of cognitive load in multimedia learning. Educational Psychologist, 38(1), 53–61.

    Google Scholar 

  • Buckalew, N., Haut, M. W., Morrow, L., & Weiner, D. (2008). Chronic pain is associated with brain volume loss in older adults: preliminary evidence. Pain Medicine, 9(2), 240–248.

    Google Scholar 

  • Buhle, J., & Wager, T. D. (2010). Performance-dependent inhibition of pain by an executive working memory task. Pain, 149(1), 19–26.

    Google Scholar 

  • Bunge, S. A., Ochsner, K. N., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. E. (2001). Prefrontal regions involved in keeping information in and out of mind. Brain, 124(10), 2074–2086.

    Google Scholar 

  • Can, S. S., & Gencay-Can, A. (2012). Assessment of cognitive function in patients with fibromyalgia using the clock drawing test. Journal of Musculoskeletal Pain, 20(3), 177–182.

    Google Scholar 

  • Cherkassky, V. L., Kana, R. K., Keller, T. A., & Just, M. A. (2006). Functional connectivity in a baseline resting-state network in autism. NeuroReport, 17(16), 1687–1690.

    Google Scholar 

  • Chi, M. T. H., Glaser, R., & Rees, E. (1982). Expertise in problem solving. In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence (Vol. 1, pp. 7–75). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Choiniere, M., & Amsel, R. (1996). A visual analogue thermometer for measuring pain intensity. Journal of Pain and Symptom Management, 11(5), 299–311.

    Google Scholar 

  • Cowan, N. (2001). The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behavioural and Brain Sciences, 24(1), 87–114.

    Google Scholar 

  • Craig, S. D., Gholson, B., & Driscoll, D. M. (2002). Animated pedagogical agents in multimedia educational environments: effects of agent properties, picture features, and redundancy. Journal of Educational Psychology, 94(2), 428–434.

    Google Scholar 

  • Davis, K. D., Taylor, S. J., Crawley, A. P., Wood, M. L., & Mikulis, D. J. (1997). Functional MRI of pain- and attention-related activations in the human cingulate cortex. The Journal of Neurophysiology, 77(6), 3370–3380.

    Google Scholar 

  • de Fockert, J. W., Rees, G., Frith, C. D., & Lavie, N. (2001). The role of working memory in visual selective attention. Science, 291(5509), 1803–1806.

    Google Scholar 

  • Dick, B. D., & Rashiq, S. (2007). Disruption of attention and working memory traces in individuals with chronic pain. Anesthesia and Analgesia, 104(5), 1223–1229.

    Google Scholar 

  • Dick, B. D., Connolly, J. F., McGrath, P. J., Finley, G. A., Stroink, G., Houlihan, M. E., et al. (2003). The disruptive effect of chronic pain on mismatch negativity. Clinical Neurophysiology, 114(8), 1497–1506.

    Google Scholar 

  • Dick, B. D., Verrier, M. J., Harker, K. T., & Rashiq, S. (2008). Disruption of cognitive function in fibromyalgia syndrome. Pain, 139(3), 610–616.

    Google Scholar 

  • Eccleston, C. (1994). Chronic pain and attention: a cognitive approach. British Journal of Clinical Psychology, 33(4), 535–547.

    Google Scholar 

  • Eccleston, C., & Crombez, G. (1999). Pain demands attention: a cognitive–affective model of the interruptive function of pain. Psychological Bulletin, 125(3), 356–366.

    Google Scholar 

  • Eccleston, C., & Crombez, G. (2007). Worry and chronic pain: a misdirected problem-solving model. Pain, 132(3), 233–236.

    Google Scholar 

  • Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102(2), 211–245.

    Google Scholar 

  • Fair, D. A., Cohen, A. L., Dosenbach, N. U. F., Church, J. A., Miezin, F. M., Barch, D. M., et al. (2008). The maturing architecture of the brain’s default network. Proceedings of the National Academy of Sciences of the United States of America, 105(10), 4028–4032.

    Google Scholar 

  • Fletcher, J. D., & Tobias, S. (2005). The multimedia principle. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 117–133). New York: Cambridge University Press.

    Google Scholar 

  • Flor, H. (2000). The functional organization of the brain in chronic pain. Progress in Brain Research, 129, 313–322.

    Google Scholar 

  • Gallagher, R. M. (2004). Biopsychosocial pain medicine and mind–brain–body science. Physical Medicine and Rehabilitation Clinics of North America, 15(4), 855–882. vii.

    Google Scholar 

  • Gatchel, R. J., Peng, Y. B., Peters, M. L., Fuchs, P. N., & Turk, D. C. (2007). The biopsychosocial approach to chronic pain: scientific advances and future directions. Psychological Bulletin, 133(4), 581–624.

    Google Scholar 

  • Geha, P. Y., Baliki, M. N., Harden, R. N., Bauer, W. R., Parrish, T. B., & Apkarian, A. V. (2008). The brain in chronic CRPS pain: abnormal gray-white matter interactions in emotional and autonomic regions. Neuron, 60(4), 570–581.

    Google Scholar 

  • Gilbert, C. D., & Sigman, M. (2007). Brain states: top-down influences in sensory processing. Neuron, 54(5), 677–696.

    Google Scholar 

  • Glass, J. M. (2009). Review of cognitive dysfunction in fibromyalgia: a convergence on working memory and attentional control impairments. Rheumatic Disease Clinics of North America, 35(2), 299–311.

    Google Scholar 

  • Gusnard, D. A., & Raichle, M. E. (2001). Searching for a baseline: functional imaging and the resting human brain. Nature Reviews Neuroscience, 2(10), 685–694.

    Google Scholar 

  • Harman, K., & Ruyak, P. (2005). Working through pain—a controlled study of the impact of persistent pain on performing a computer task. Clinical Journal of Pain, 21(3), 216–222.

    Google Scholar 

  • Harp, S. F., & Mayer, R. E. (1997). The role of interest in learning from scientific text and illustrations: on the distinction between emotional interest and cognitive interest. Journal of Educational Psychology, 89(1), 92–102.

    Google Scholar 

  • Hart, R. P., Wade, J. B., & Martelli, M. F. (2003). Cognitive impairment in patients with chronic pain: the significance of stress. Current Pain and Headache Reports, 7(2), 116–126.

    Google Scholar 

  • Henry, D. E., Chiodo, A. E., & Yang, W. (2011). Central nervous system reorganization in a variety of chronic pain states: a review. PM & R, 3(12), 1116–1125.

    Google Scholar 

  • Hoffman, B., & Schraw, G. (2010). Conceptions of efficiency: applications in learning and problem solving. Educational Psychologist, 45, 1–14.

    Google Scholar 

  • Jensen, M. P., Chen, C., & Brugger, A. M. (2003). Interpretation of visual analog scale ratings and change scores: a reanalysis of two clinical trials of postoperative pain. The Journal of Pain, 4(7), 407–414.

    Google Scholar 

  • Kalyuga, S., Chandler, P., & Sweller, J. (1998). Levels of expertise and instructional design. Human Factors, 40, 1–17.

    Google Scholar 

  • Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). Expertise reversal effect. Educational Psychologist, 38(1), 23–31.

    Google Scholar 

  • Karp, J. F., Reynolds, C. F., Butters, M. A., Drew, M. A., Mazumdar, S., Begley, A. E., et al. (2006). The relationship between pain and mental flexibility in older adult pain clinic patients. Pain Medicine, 7(5), 444–452.

    Google Scholar 

  • Kendall, P. C., Hollon, S. D., Beck, A. T., Hammen, C. L., & Ingram, R. E. (1987). Issues and recommendations regarding use of the Beck Depression Inventory. Cognitive Therapy and Research, 11(3), 289–299.

    Google Scholar 

  • Kennedy, D. P., & Courchesne, E. (2008). Functional abnormalities of the default network during self-and other-reflection in autism. Social Cognitive and Affective Neuroscience, 3(2), 177–190.

    Google Scholar 

  • Kuhajda, M. C., Thorn, B. E., Klinger, M. R., & Rubin, N. J. (2002). The effect of headache pain on attention (encoding) and memory (recognition). Pain, 97(3), 213–221.

    Google Scholar 

  • Kupers, R., & Kehlet, H. (2006). Brain imaging of clinical pain states: a critical review and strategies for future studies. The Lancet Neurology, 5(12), 1033–1044.

    Google Scholar 

  • Leavitt, F., & Katz, R. S. (2006). Distraction as a key determinant of impaired memory in patients with fibromyalgia. The Journal of Rheumatology, 33(1), 127–132.

    Google Scholar 

  • Leeuw, M., Goossens, M., Linton, S. J., Crombez, G., Boersma, K., & Vlaeyen, J. W. S. (2007). The fear-avoidance model of musculoskeletal pain: current state of scientific evidence. Journal of Behavioural Medicine, 30(1), 77–94.

    Google Scholar 

  • Leppink, J., Paas, F., Van der Vleuten, C. P. M., Van Gog, T., & Van Merriënboer, J. J. G. (2013). Development of an instrument for measuring different types of cognitive load. Behavior Research Methods. doi:10.3758%2Fs13428-013-0334-1.

    Google Scholar 

  • Loftus, S., & Higgs, J. (2006). Clinical decision-making in multidisciplinary clinics. In H. Flor, E. Kalso, & J. O. Dostrovsky (Eds.), Proceedings of the 11th World Congress on Pain (pp. 755–760). Seattle: IASP Press.

    Google Scholar 

  • Luerding, R., Weigand, T., Bogdahn, U., & Schmidt-Wilcke, T. (2008). Working memory performance is correlated with local brain morphology in the medial frontal and anterior cingulated cortex in fibromyalgia patients: structural correlates of pain–cognition interaction. Brain, 131(12), 3222–3231.

    Google Scholar 

  • Mayer, R. E. (2005). Cognitive theory of multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 31–48). New York: Cambridge University Press.

    Google Scholar 

  • Mayer, R. E., & Moreno, R. (1998). A split attention effect in multimedia learning: evidence for dual processing systems in working memory. Journal of Educational Psychology, 90(2), 312–320.

    Google Scholar 

  • Mayer, R. E., Heiser, J., & Lonn, S. (2001). Cognitive constraints on multimedia learning: when presenting more material results in less understanding. Journal of Educational Psychology, 93(1), 187–198.

    Google Scholar 

  • Mayer, J. S., Bittner, R. A., Nikolic, D., Bledowski, C., Goebel, R., & Linden, D. E. J. (2007). Common neural substrates for visual working memory and attention. NeuroImage, 36(2), 441–453.

    Google Scholar 

  • Melzack, R. (1975). The McGill Pain Questionnaire: major properties and scoring methods. Pain, 1(3), 277–299.

    Google Scholar 

  • Melzack, R. (1987). The short-form McGill Pain Questionnaire. Pain, 30(2), 191–197.

    Google Scholar 

  • Melzack, R. (2005). The McGill Pain Questionnaire: from description to measurement. Anesthesiology, 103(1), 199–202.

    Google Scholar 

  • Michael, E. S., & Burns, J. W. (2004). Catastrophising and pain sensitivity among chronic pain patients: moderating effects of sensory and affect focus. Annals of Behavioral Medicine, 27(3), 185–194.

    Google Scholar 

  • Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological Review, 63, 81–97.

    Google Scholar 

  • Moayedi, M., Weissman-Fogel, I., Salomons, T. V., Crawley, A. P., Goldberg, M. B., Freeman, B. V., et al. (2012). White matter brain and trigeminal nerve abnormalities in temporomandibular disorder. Pain, 153(7), 1467–1477.

    Google Scholar 

  • Moreno, R., & Mayer, R. E. (1999). Cognitive principles of multimedia learning: the role of modality and contiguity. Journal of Educational Psychology, 91(2), 358–368.

    Google Scholar 

  • Moreno, R., & Mayer, R. E. (2002). Verbal redundancy in multimedia learning: when reading helps listening. Journal of Educational Psychology, 94(1), 156–163.

    Google Scholar 

  • Moriarty, O., McGuire, B. E., & Finn, D. P. (2011). The effect of pain on cognitive function: a review of clinical and preclinical research. Progress in Neurobiology, 93(3), 385–404.

    Google Scholar 

  • Naghavi, H. R., & Nyberg, L. (2005). Common fronto-parietal activity in attention, memory, and consciousness: shared demands on integration? Consciousness and Cognition, 14(2), 390–425.

    Google Scholar 

  • Napadow, V., Lacount, L., Park, K., As-Sanie, S., Clauw, D. J., & Harris, R. E. (2010). Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis and Rheumatism, 62(8), 2545–2555.

    Google Scholar 

  • Neugebauer, V., Galhardo, V., Maione, S., & Mackey, S. C. (2009). Forebrain pain mechanisms. Brain Research Reviews, 60(1), 226–242.

    Google Scholar 

  • Niv, D., & Kreitler, S. (2001). Pain and quality of life. Pain Practice, 1(2), 150–161.

    Google Scholar 

  • Oosterman, J. M., Derksen, L. C., van Wijck, A. J. M., Veldhuijzen, D. S., & Kessels, R. P. C. (2011). Memory functions in chronic pain: examining contributions of attention and age to test performance. The Clinical Journal of Pain, 27(1), 70–75.

    Google Scholar 

  • Paas, F. G. W. C. (1992). Training strategies for attaining transfer of problem solving skills in statistics: a cognitive load approach. Journal of Educational Psychology, 84(4), 429–434.

    Google Scholar 

  • Paas, F. G. W. C., & van Merriënboer, J. J. G. (1994). Variability of worked examples and transfer of geometrical problem-solving skills: a cognitive-load approach. Journal of Educational Psychology, 86, 122–133.

    Google Scholar 

  • Paas, F., Camp, G., & Rikers, R. (2001). Instructional compensation for age-related cognitive declines: effects of goal specificity in maze learning. Journal of Educational Psychology, 93, 181–186.

    Google Scholar 

  • Paas, F., Tuovinen, J. E., Tabbers, H., & van Gerven, P. W. M. (2003). Cognitive load measurement as a means to advance cognitive load theory. Educational Psychologist, 38, 63–71.

    Google Scholar 

  • Paivio, A. (1986). Mental representations: a dual-coding approach. New York: Oxford University Press.

    Google Scholar 

  • Penney, C. G. (1989). Modality effects and the structure of short term verbal memory. Memory and Cognition, 17(4), 398–422.

    Google Scholar 

  • Pessoa, L., Kastner, S., & Ungerleider, L. G. (2003). Neuroimaging studies of attention: from modulation of sensory processing to top-down control. The Journal of Neuroscience, 23(10), 3990–3998.

    Google Scholar 

  • Peterson, L. R., & Peterson, M. J. (1959). Short-term retention of individual verbal items. Journal of Experimental Psychology, 58, 193–198.

    Google Scholar 

  • Raichle, M. E. (2006). The brain’s dark energy. Science, 314(5803), 1249–1250.

    Google Scholar 

  • Raichle, M. E., & Snyder, A. Z. (2007). A default mode of brain function: a brief history of an evolving idea. NeuroImage, 37(4), 1083–1090.

    Google Scholar 

  • Rodriguez-Raecke, R., Niemeier, A., Ihle, K., Ruether, W., & May, A. (2009). Brain gray matter decrease in chronic pain is the consequence and not the cause of pain. Journal of Neuroscience, 29(44), 13746–13750.

    Google Scholar 

  • Schmidt-Wilcke, T. (2008). Variations in brain volume and regional morphology associated with chronic pain. Current Rheumatology Reports, 10(6), 467–474.

    Google Scholar 

  • Schmitz, N., Arkink, E. B., Mulder, M., Rubia, K., Admiraal-Behloul, F., Schoonman, G. G., Kruit, M. C., Ferrari, M. D., & van Buchem, M. A. (2008). Frontal lobe structure and executive function in migraine patients. Neuroscience Letters, 440(2), 92–96.

    Google Scholar 

  • Seminowicz, D. A., & Davis, K. D. (2007). A re-examination of pain–cognition interactions: implications for neuroimaging. Pain, 130(1), 8–13.

    Google Scholar 

  • Seo, J., Kim, S.-H., Kim, Y.-T., Song, H.-J., Lee, J.-j., Kim, S.-H., Hans, S. W., Nam, E. J., Kim, S.-K., Lee, H. J., Lee, S.-J., & Chang, Y. (2012). Working memory impairment in fibromyalgia patients associated with altered frontoparietal memory network. PLoS ONE, 7(6), e37808.

    Google Scholar 

  • Sephton, S. E., Studts, J. L., Hoover, K., Weissbecker, I., Lynch, G., Ho, I., et al. (2003). Biological and psychological factors associated with memory function in fibromyalgia syndrome. Health Psychology, 22(6), 592–597.

    Google Scholar 

  • Shibasaki, H. (2004). Central mechanisms of pain perception. Supplements to Clinical Neurophysiology, 57, 39–49.

    Google Scholar 

  • Sjogren, P., Ekholm, O., Peuckmann, V., & Gronbaek, M. (2009). Epidemiology of chronic pain in Denmark: an update. European Journal of Pain, 13(3), 287–292.

    Google Scholar 

  • Sullivan, M. J., Lynch, M. E., & Clark, A. J. (2005). Dimensions of catastrophic thinking associated with pain experience and disability in patients with neuropathic pain conditions. Pain, 113(3), 310–315.

    Google Scholar 

  • Sweller, J., van Merriënboer, J. J. G., & Pass, F. G. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251–296.

    Google Scholar 

  • Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. New York: Springer.

    Google Scholar 

  • Szabo, N., Kincses, Z. T., Pardutz, A., Tajti, J., Szok, D., Tuka, B., et al. (2012). White matter microstructural alterations in migraine: a diffusion-weighted MRI study. Pain, 153(3), 651–656.

    Google Scholar 

  • Toblin, R. L., Mack, K. A., Perveen, G., & Paulozzi, L. J. (2011). A population-based survey of chronic pain and its treatment with prescription drugs. Pain, 152(6), 1249–1255.

    Google Scholar 

  • Tracey, I. (2005). Nociceptive processing in the human brain. Current Opinion in Neurobiology, 15(4), 478–487.

    Google Scholar 

  • Tracey, I., & Mantyh, P. W. (2007). The cerebral signature for pain perception and its modulation. Neuron, 55(3), 377–391.

    Google Scholar 

  • Turk, D. C., & Okifuji, A. (2001). Pain terms and taxonomies of pain. In J. D. Loeser, S. H. Butler, C. R. Chapman, & D. C. Turk (Eds.), Bonica’s management of pain (3rd ed., pp. 17–25). Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  • Valfre, W., Rainero, I., Bergui, M., & Pinessi, L. (2008). Voxel-based morphometry reveals gray matter abnormalities in migraine. Headache, 48(1), 109–117.

    Google Scholar 

  • Van Damme, S., Crombez, G., & Eccleston, C. (2004). Disengagement from pain: the role of catastrophic thinking about pain. Pain, 107(1–2), 70–76.

    Google Scholar 

  • van Gerven, P., Paas, F. G. W. C., van Merriënboer, J. J. G., & Schmidt, H. (2002). Cognitive load theory and aging: effects of worked examples on training efficiency. Learning and Instruction, 12, 87–105.

    Google Scholar 

  • van Gerven, P., Paas, F. G. W. C., van Merriënboer, J. J. G., & Schmidt, H. (2006). Modality and variability as factors in training the elderly. Applied Cognitive Psychology, 20(3), 311–320.

    Google Scholar 

  • Vangronsveld, K., Van Damme, S., Peters, M. L., Vlaeyen, J. W. S., Goossens, M., & Crombez, G. (2007). An experimental investigation on attentional interference by threatening neck movements in chronic whiplash patients. Pain, 127(1–2), 121–128.

    Google Scholar 

  • Veldhuijzen, D. S., Kenemans, J. L., Van Wijck, A. J. M., Olivier, B., Kalkman, C. J., & Volkerts, E. R. (2006). Processing capacity in chronic pain patients: a visual event-related potentials study. Pain, 121(1), 60–68.

    Google Scholar 

  • Veldhuijzen, D. S., Sondaal, S. F. V., & Oosterman, J. M. (2012). Intact cognitive inhibition in patients with fibromyalgia but evidence of declined processing speed. Journal of Pain, 13(5), 507–515.

    Google Scholar 

  • Verdejo-Garcia, A., Lopez-Torrecillas, F., Calandre, E. P., Delgado-Rodriguez, A., & Bechara, A. (2009). Executive function and decision-making in women with fibromyalgia. Archives of Clinical Neuropsychology, 24(1), 113–122.

    Google Scholar 

  • Vincent, K., Warnaby, C., Stagg, C. J., Moore, J., Kennedy, S., & Tracey, I. (2011). Dysmenorrhoea is associated with central changes in otherwise healthy women. Pain, 152(9), 1966–1975.

    Google Scholar 

  • Wang, K., Liang, M., Wang, L., Tian, L., Zhang, X., Li, K., et al. (2007). Altered functional connectivity in early Alzheimer’s disease: a resting-state fMRI study. Human Brain Mapping, 28(10), 967–978.

    Google Scholar 

  • Weissman-Fogel, I., Moayedi, M., Tenenbaum, H. C., Goldberg, M. B., Freeman, B. V., & Davis, K. D. (2011). Abnormal cortical activity in patients with temporomandibular disorder evoked by cognitive and emotional tasks. Pain, 152(2), 384–396.

    Google Scholar 

  • Whitfield-Gabrieli, S., Thermenos, H. W., Milanovic, S., Tsuang, M. T., Faraone, S. V., McCarley, R. W., et al. (2009). Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proceedings of the National Academy of Sciencesof the United States of America, 106(4), 1279–1284.

    Google Scholar 

  • Wiech, K., Ploner, M., & Tracey, I. (2008). Neurocognitive aspects of pain perception. Trends in Cognitive Sciences, 12(8), 306–313.

    Google Scholar 

Download references

Acknowledgments

The first author thanks Kaytoo Kreations for technical expertise required for the experiment instructional material. Both authors thank the markers and the teachers who participated in this study. This study was funded by the Faculty of Arts and Social Sciences (University of New South Wales, Australia) and the NSW Institute for Educational Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Ayres.

Appendix

Appendix

Sample responses to the tests provided in the response booklet to participants.

Retention Test

Responses could include the following: cool air moves, cool air becomes warmer, air rises, water vapour condenses to form a cloud, the cloud moves beyond the freezing level, crystals form, water and crystals fall, updrafts and downdrafts are produced, wind gusts are felt before the onset of rain, electrical charges build, negatively charged particles fall to the bottom of the cloud (or positive charges go to the top), a negative step leader travels down, leaders meet, negatively charged particles rush down, positively charged particles rush up, production of a bright light as a flash of lightning.

Transfer Test

For task 1, correct answers could suggest that the air temperature needs to be cooler than the ground; that there needs to be a difference in temperature between the top and the bottom of the cloud; or that the top of the cloud needs to be above the freezing level.

For task 2, solutions could highlight that the cloud or part thereof might not be above the freezing level; that there may not be enough air moisture; or there may not be enough negatively charged particles in the cloud.

For task 3, answers may have included the removal of positive ions from the ground, adding positive ions to the bottom of the cloud, heating the clouds to prevent freezing and the formation of ice crystals.

For task 4, answers acknowledging a difference in electrical charges in the cloud, a difference in temperature within the cloud, or a difference in charge between the positive charge on the ground and the negative charge in the cloud were acceptable.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, A., Ayres, P. The Impact of Persistent Pain on Working Memory and Learning. Educ Psychol Rev 26, 245–264 (2014). https://doi.org/10.1007/s10648-013-9247-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10648-013-9247-x

Keywords

Navigation