Skip to main content
Log in

Pesticide-induced oxidative stress and antioxidant responses in tomato (Solanum lycopersicum) seedlings

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Excessive use of pesticides can adversely affect the growth of non-target host plants in different ways. Pesticide-induced stress can affect non-target plants through elevated levels of reactive oxygen species (ROS) responsible for detrimental effects on cell metabolism, biochemical and other physiological activities. In response to oxidative stress, plant activates antioxidant defense system consisting of both enzymatic and non-enzymatic components. In the present investigation, three commonly used pesticides, emamectin benzoate, alpha-cypermethrin and imidacloprid, were assessed for causing oxidative stress in tomato. The oxidative damage induced by these pesticides at five different concentrations i.e. 1/4X, 1/2X, recommended application dose (X), 2X and 4X in the root and shoot tissues of tomato plant/seedlings were evaluated. Following pesticide exposure for 35 days, cell viability, cell injury, total soluble sugar (TSS) and total soluble proteins (TSP) were measured. Antioxidant activities were estimated by measuring activity levels of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) peroxidase (POD), ascorbate peroxidase (APX) and proline. Hydrogen peroxide (H2O2) levels were analysed as ROS, lipid peroxidation was measured in term of thiobarbituric acid reactive substances (TBARS) as membrane damage caused by ROS was also assessed. Analysis of the data revealed that pesticides application at higher concentrations significantly elevated ROS levels and caused membrane damage by the formation of TBARS, increased cell injury and reduced cell viability both in root and shoot tissues compared with non-treated plants. Moreover, a gradual decrease in the levels of TSS and TSP was observed in plants subjected to increasing doses of pesticides. To cope with pesticide-induced oxidative stress, a significant increase in levels of antioxidants was observed in the plants exposed to higher doses of pesticides. Shoot tissues responded more drastically by producing higher levels of antioxidants as compared to root tissues indicating the direct exposure of shoots to foliar application of pesticides. Taken together, these results strongly suggested that the application of pesticides above the recommended dose can provoke the state of oxidative stress and can cause oxidative damages in non-target host plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Method Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Ahmad A, Hadi F, Ali N (2015) Effective Phytoextraction of cadmium (Cd) with increasing concentration of total phenolics band free proline in Cannabis sativa (L) plant under various treatments of fertilizers, plant growth regulators and sodium salt. Int J Phytorem 17:56–65

    Article  CAS  Google Scholar 

  • Akhtar MW, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Int Toxicol 2:1–12

    Google Scholar 

  • Aksoy O, Deveci A, Kizilirmak S, Akdeniz GB (2013) Phytotoxic effect of quizalofop-P-ethyl on soybean (Glycine max L.). J Biol Environ Sci 7:49–55

    Google Scholar 

  • Ali I, Liu B, Farooq MA, Islam F, Azizullah A, Yu C, Su W, Gan Y (2016) Toxicological effects of bisphenol A on growth and antioxidant defense system in Oryza sativa as revealed by ultrastructure analysis. Ecotoxicol Environ Saf 124:277–84

    Article  CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplast and their functions. Plant Physiol 141:391–396

    Article  CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Asogwa EU, Dongo LN (2009) Problems associated with pesticide usage and application in Nigerian cocoa production: a review. Afr J Agri Res 4:675–683

    Google Scholar 

  • Aspinall D, Paleg LG (1981) Proline accumulation: physiological aspects. Paleg LG, Aspinall D The biochemistry and physiology of drought resistance in plants. Academic Press, New York, NY, 205–207

    Google Scholar 

  • Baig SA, Akhter NA, Ashfaq M, Asi MR, Ashfaq U (2012) Imidacloprid residues in vegetables, soil and water in the southern Punjab, Pakistan. J Agri Tech 8:903–916

    CAS  Google Scholar 

  • Balestri M, Barresi M, Campera M, Serra V, Ramanamanjato JB, Heistermann M (2014) Habitat degradation and seasonality affect physiological stress levels of eulemur collaris in littoral forest fragments. PLoS One 9(9):e107698. https://doi.org/10.1371/journal.pone.0107698

    Article  CAS  Google Scholar 

  • Banerjee BD, Seth V, Ahmed RS (2001) Pesticide-induced oxidative stress perspectives and trends. Rev Environ Health 16:1–40

    Article  CAS  Google Scholar 

  • Bashir F, Siddiqi TO, Mahmooduzzafar IqbalM (2007) The antioxidative response system in Glycine max (L.) Merr. Exposed to deltamethrin, a synthetic pyrethroid insecticide Environ Pollut 147:94–100

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free praline for water stress studies. Plant Soil 39:205–2017

    Article  CAS  Google Scholar 

  • Bayramov SM, Babayev HG, Khaligzade MN, Guliyev NM, Raines CA (2010) Effect of water stress on protein content of some calvin cycle enzymes in different wheat genotypes. Proc ANAS (Biol Sci) 65:106–111

    Google Scholar 

  • Berger S, Cwick K (1990) Selected aspect of adverse nutritional effect of pesticides. Ernahrung 14:411–415

    Google Scholar 

  • Boaretto LF, Carvalho G, Borgo L, Creste S, Landell MGA, Mazzafera P, Azevedo RA (2014) Water stress reveals differential antioxidant responses of tolerant and non-tolerant sugarcane genotypes. Plant Physiol Biochem 74:165–175

    Article  CAS  Google Scholar 

  • Bolwell GP, Wojtaszek P (1997) Mechanisms for the generation of reactive oxygen species in plant defence – a broad perspective. Physiol Mol Plant Pathol 51:347–366

    Article  CAS  Google Scholar 

  • Bowler C, Van Montague M, Inzé D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–259

    Article  CAS  Google Scholar 

  • Breda C, Buffard D, Van Huystee RB, Esnault R (1993) Differential expression of two peanut peroxidase cDNA clones in peanut plants and cells in suspension culture in response to stress. Plant Cell Rep 12(b):268–272

    Article  CAS  Google Scholar 

  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227

    Article  CAS  Google Scholar 

  • Cali IO, Candan F (2009) The effect of fungicide application on pollen structure in tomato (Lycopersicon esculentum Mill.). Plant J Appl Biol Sci 3:37–40

    Google Scholar 

  • Cia MC, Guimarães ACR, Medici LO, Chabregas SM, Azevedo RA (2012) Antioxidant responses to water deficit by drought-tolerant and -sensitive sugarcane varieties. Ann Appl Biol 161:313–324

    Article  CAS  Google Scholar 

  • Cao S, Xu Q, Cao Y, Qian K, An K, Zhu Y, Binzeng H, Zhao H, Kuai B (2005) Loss-of-function mutations in DET2 gene lead to an enhanced resistance to oxidative stress in Arabidopsis. Physiol Plant 123:57–66

    Article  CAS  Google Scholar 

  • Cardone A (2015) Imidacloprid induces morphological and molecular damages on testis of lizard (Podarcis sicula). Ecotoxicology 24:94–105

    Article  CAS  Google Scholar 

  • Carvalho FP (2006) Agriculture, pesticides, food security and food safety. Environ Sci Policy 9:68–692

    Article  Google Scholar 

  • Chohan TZ, Ahmad S (2008) An assessment of tomato production practices in Danna Katchely, Azad Jammu Kashmir. Pak J Life Soc Sci 6:96–102

    Google Scholar 

  • Daud MK, Hassan S, Azizullah A, Jamil M, Rehan N, Irum R, Qaiser MK, Zhu (2016) Physiological, biochemical, and genotoxic effects of wastewater on maize seedlings. Pol J Environ Stud 25:563–571

    Article  CAS  Google Scholar 

  • D’Autréaux B, Toledano MB (2007) ROS as signaling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824

    Article  CAS  Google Scholar 

  • De A, Bose R, Kumar A, Mozumdar S (2014) Targeted delivery of pesticides using biodegradable polymeric nanoparticles. Pege XXIII, 99. https://doi.org/10.1007/978-81-322-1689-

  • DeLorenzo ME, Scott GI, Ross PE (2001) Toxicity of pesticides to aquatic microorganisms: a review. Environ Toxicol Chem 20:84–98

    Article  CAS  Google Scholar 

  • Djebar BN, Reda M, Noureddine Z, Houria B (2014) Differential response to treatment with herbicide chevalier induced oxidative stress in leaves of wheat. Ann Biol Res 5:1–7

    Google Scholar 

  • Dobsikova R (2003) Acute toxicity of carbofuran to selected species of aquatic and terrestrial organisms. Plant Prot Sci 39:103–108

    Article  Google Scholar 

  • Ecobichon DJ (2001) Pesticide use in developing countries. Toxicology 160:27–33

    Article  CAS  Google Scholar 

  • Edwards CA (1986) Agrochemicals as environmental pollutants. In: Van Hofsten B, Eckstrom G (eds) Control of pesticide applications and residues in food. A guide and directory. Swedish Science Press, Uppsala

    Google Scholar 

  • Elstner EF (1990) Der Sauerstoff- Biochemie Biologie Medizin. BI-Wissenschaftsverlag, Mannheim

    Google Scholar 

  • FAO (2007) Food and Agricultural Organization Stat, core production 2005. http://faostat.fao.org/site/340/default.aspx. Accessed 4 June 2017

  • Fidalgo F, Freitas R, Ferreira R, Pessoa A, Teixeira J (2011) Solanum nigrum L: antioxidant defense system isoenzymes are regulated transcriptionally and post translationally in Cd-induced stress. Environ Exp Bot 72:312–319

    Article  CAS  Google Scholar 

  • Fidalgo F, Azenha M, Silva FA, de Sousa A, Santiago A, Ferraz P, Teixeira J (2013) Copper-induced stress in Solanum nigrum L. and antioxidant defense system responses. Food Energy Secur 2:70–80

    Article  Google Scholar 

  • Folnovic T (2015) Yield losses due to pests. http://blog.agrivi.com/post/yield-losses-due-to-pests. Accessed 29 June 2017

  • Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide and glutathione –associated mechanisms of acclamatory stress tolerance and signaling. Physiol Plant 100:241–254

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Gajewska E, Skłodowska M (2008) Differential biochemical responses of wheat shoots and roots to nickel stress: antioxidative reactions and proline accumulation. Plant Growth Regul 54:179–188

    Article  CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) “Superoxide dismutases: I. Occurrence in higher plants”. Plant Physiol 59:309

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress 519 tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  Google Scholar 

  • Glover-Amengor M, Tetteh FM (2008) Effect of pesticide application rate on yield of vegetables and soil microbial communities. W Afr J Appl Ecol 12:1–7

    Google Scholar 

  • Goel A, Goel A, Sheoran IS (2003) Changes in oxidative enzymes during artificial aging in cotton (Gossypium hirsutum L.) seeds. J Plant Physiol 160:1092–1100

    Article  Google Scholar 

  • Gomes-Junior RA, Moldes CA, Delite FS, Gratão PL, Mazzafera P, Lea PJ, Azevedo RA (2006) Nickel elicits a fast antioxidant response in Coffea arabica cells. Plant Physiol Biochem 44:420–429

    Article  CAS  Google Scholar 

  • Gopi R, Jaleel CA, Sairam R, Lakshmanan GMA, Gomithinayagam M, Pannerselvem R (2007) Differentialn effects of hexaconazole and paclobutrazol on biomass, electrolyte leakage, lipid peroxidation and antioxidant potential of Daucus carota L. Colloids Surf B 60:180–186

    Article  CAS  Google Scholar 

  • Gratão P, Monteiro C, Antunes A, Peres L, Azevedo R (2008) Acquired tolerance of tomato (Lycopersicon esculentum cv. Micro-Tom) plants to cadmium‐induced stress. Ann Appl Biol 153:321–333

    Article  Google Scholar 

  • Grata˜o PL, Monteiro CC, Carvalho RF, Tezotto T, Piotto FA, Peres LEP, Azevedo RA (2012) Biochemical dissection of diageotropica and never ripe tomato mutants to Cd stressful conditions. Plant Physiol Biochem 56:79–96

    Article  CAS  Google Scholar 

  • Haddad R, Morris K, Buchanan-Wollaston V (2009) Molecular characterization of free radicals decomposing genes on plant developmental stages. Int J Biol Biomol Agric Food Biotechnol Eng 3:77–83

    Google Scholar 

  • Haq QU, Ali T, Ahmad M, Nosheen F (2008) An analysis of pesticide usage by cotton growers: a case study of district Multan, Punjab-Pakistan. Pak J Agric Sci 45:133–137

    Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Ahmad A (2012) Salicylic acid enhances the efficiency of nitrogen fixation and assimilation in Cicer arietinum plants grown under cadmium stress. J Plant Interact 9:35–42

    Article  CAS  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Idrovo A (2000) Surveillance of pesticide poisonings in Colombia. Public Health 2:36–46

    Google Scholar 

  • Jaleel CA, Gopi R, Alagu Lal Shmanan GM, Panneerselvam R (2006) TDM induced changes in the antioxidant metabolism and ajmalicine production in Catharanthus roseus L. G Don Plant Sci 7:271–276

    Article  CAS  Google Scholar 

  • Jianga L, Maa L, Suia Y, Hna SQ, Wua ZY, Fenga YX, Yanga H (2010) Effect of manure compost on the herbicide prometryne bioavailability to wheat plants. J Hazard Mater 184:337–344

    Article  CAS  Google Scholar 

  • Jin XF, Yang XE, Islam E, Liu D, Mahmood Q, Li H, Li J (2008) Ultrastructural changes, zinc hyperaccumulation and its relation with antioxidants in two ecotypes of Sedum alfredii Hance. Plant Physiol Biochem 46:997–1006

    Article  CAS  Google Scholar 

  • Karadge BA, Karne AV (1985) Influence of systemic fungicides. Bavistin and calixin on Lycopersicon esculentum Mill. leaves. Biovigyanum 11:166–168

    CAS  Google Scholar 

  • Khan A, Ahmad L, Khan MZ (2012) Hemato-biochemical changes induced by pyrethroid insecticides in avian, fish and mammalian species. Int J Agric Biol 14:834–842

    CAS  Google Scholar 

  • Khan AF (2014) Hazards of pesticide spray on vegetables. The Daily Dawn Pakistan, Internet Edition, June 12, 2014

  • Khokhar KM (2013) Present status and prospects of tomatoes in Pakistan. http://www.agricorner.com/present-status-and-prospects-of-tomatoes-in-pakistan/. Accessed 19 July 2017

  • Khooharo AA, Memon RA, Mallah MU (2008) An empirical analysis of pesticide marketing in Pakistan. Pak Ecol Soc Rev 46:57–74

    Google Scholar 

  • Kilic S, Duran RE, Coskun Y (2015) Morphological and physiological responses of maize (Zea mays L.) seeds grown under increasing concentrations of chlorantraniliprole insecticide. Pol J Environ Stud 24:1069–1075

    Article  Google Scholar 

  • Kovacik J, Klejdus B, Hedbavny J, Backor M 2009) Salicylic acid alleviates NaCl-induced changes in the metabolism of Matricaria chamomilla plants Ecotoxicology 18:544–554

    Article  CAS  Google Scholar 

  • Lee-Fook-Choy LH, Seeneevassen S (1998) Monitoring insecticide residues in vegetables and fruits at the market level. AMAS, Food and Agricultural Research Council, Reduit, Mauritius, p 95

    Google Scholar 

  • Lee DH, Kim YS, Lee CB (2001) The individual response of the antioxidant enzymes by salt stress in rice (Oryza sativa L.). J Plant Physiol 158:737–745

    Article  CAS  Google Scholar 

  • Li FL, Bao WK, Wu N (2011) Morphological, anatomical and physiological responses of Campylotropis polyantha (Franch.) Schindl. seedlings to progressive water stress. Sci Hortic-Amst 127:436–443

    Article  Google Scholar 

  • Liang X, Zhang L, Natarajan SK, Becker DF (2013) Proline mechanisms of stress survival. Antioxid Redox Signal 19:998–1011

    Article  CAS  Google Scholar 

  • Lu S, Yuejing Z, Niu Y, Bingru Z (2008) Antioxidant responses of radiation-induced dwarf mutants of bermuda grass to drought stress. J Am Soc Hortic Sci 133:360–366

    Google Scholar 

  • Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101:13–30

    Article  CAS  Google Scholar 

  • Martínez-Domínguez G, Nieto-García AJ, Romero-Gonzalez R, Frenich AG (2015) Application of QuEChERS based method for the determination of pesticides in nutraceutical products (Camellia sinensis) by liquid chromatography coupled to triple quadrupole tandem mass spectrometry. Food Chem 177:182–190

    Article  CAS  Google Scholar 

  • Mirza I (2007). Tomato paste plant to be set up at Killa Saifullah. http://www.pakissan.com/english/news/newsDetail.php?newsid=15041 Accessed 31 Aug 2007

  • Mishra V, Srivastava G, Prasad SM (2009) Antioxidant response of bitter gourd (Momordica charantia L.) seedlings to interactive effect of dimethoate and UV-B irradiation. Sci Hortic 120:373–378

    Article  CAS  Google Scholar 

  • Mishra B, Sangwan RS, Mishra S, Jadaun JS, Sabir F, Sangwan NS (2014) Effect of cadmium stress on inductive enzymatic and nonenzymatic responses of ROS and sugar metabolism in multiple shoot cultures of Ashwagandha (Withania somnifera Dunal). Protoplasma 251:1031–1045

    Article  CAS  Google Scholar 

  • Mitra A, Chatterjee C, Mandal FB (2011) Synthetic chemical pesticides and their effects on birds. Res J Environ Toxicol 5:81–96

    Article  CAS  Google Scholar 

  • Mittler R 2002) Oxidative stress, antioxidants and stress tolerance Trend Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  Google Scholar 

  • Morimura T, Ohya T, Ikawa T (1996) Presence of ascorbate peroxidizing enzymes in roots of Brassica campestris L. cv Komatsuna. Plant Sci 117:55–63

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nasrabadi M, Ghayal N, Dhumal KN (2011) Effect of chloropyrifos and malathion on antioxidant enzymes in tomato and brinjal. Int J Pharma Biol Sci 2:202–209

    CAS  Google Scholar 

  • Parween T, Jan S, Mahmooduzzafar FatmaT (2011) Alteration in nitrogen metabolism and plant growth during different developmental stages of green gram (Vigna radiata L.) in response to chlorpyrifos. Acta Physiol Plant 33:2321–2328

    Article  CAS  Google Scholar 

  • Parween T, Jan S, Mahmooduzzafar FatmaT (2012a) Evaluation of oxidative stress in Vigna radiata L. in response to chlorpyrifos. Int J Environ Sci Technol 9:605–612

    Article  CAS  Google Scholar 

  • Prasad SM, Dwivedi R, Zeeshan M (2005a) Growth, photosynthetic electron transport, and antioxidant responses of young soybean seedlings to simultaneous exposure of nickel and UV-B stress. Photosynthetica 43:177–185

    Article  CAS  Google Scholar 

  • Prasad SM, Kumar D, Zeeshan M (2005b) Growth, photosynthesis, active oxygen species and antioxidants responses of paddy field cyanobacterium Plectonema boryanum to endosulfan stress. J Gen Appl Microbiol 51:115–123

    Article  CAS  Google Scholar 

  • Prasad SM, Srivastava G, Mishra V, Dwivedi R, Zeeshan M (2005c) Active oxygen species generation, oxidative damage and antioxidative defense system in Pisum sativum exposed to UV-B irradiation. Physiol Mol Biol Plants 11:303–311

    CAS  Google Scholar 

  • Putter J (1974) In: Bergmeyer (ed) Method of enzymatic method analysis, vol. 2. Academic Press, New York, NY

  • Qadir S, Qureshi MI, Javed S, Abdin MZ (2004) Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress. Plant Sci 167:1171–1181

    Article  CAS  Google Scholar 

  • Rachid R, Djebar-Berrebbah H, Djebar MR (2008) Growth, chitin and respiratory metabolism of Tetrahymena pyriformis exposed to the insecticide Novaluron. Am-Eurasia J Agric Environ Sci 3:873–881

    Google Scholar 

  • Rehman K (1994) Pesticides causing environmental pollution. Habib N A workshop on people and pesticides. Khoj-Research and Publication Center, Lahore, Pakistan, 39–40

    Google Scholar 

  • Rio AD, Bamberg J, Centeno-Diaz R, Salas A, Roca W, Tay D (2012) Effects of the pesticide furadan on traits associated with reproduction in wild potato species. Am J Plant Sci 3:1608–1612

    Article  CAS  Google Scholar 

  • Scandalios JG (1993) Oxygen stress and superoxides dismutase. Plant Physiol 101:7–12

    Article  CAS  Google Scholar 

  • Seth CS, Chaturvedi PK, Misra V (2008) The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L. Ecotoxicol Environ Saf 71:76–85

    Article  CAS  Google Scholar 

  • Shakir SK, Kanwal M, Murad W, Zia ur Rehman, Shafiq ur Rehman, Daud MK, Azizullah A (2016) Effect of some commonly used pesticides on seed germination, biomass production and photosynthetic pigments in tomato (Lycopersicon esculentum). Ecotoxicology 25:329–41

    Article  CAS  Google Scholar 

  • Shakoor A, Sabri MA, Afzal M, Bashir MH (2010) Role of plant morphological characters towards resistance of some cultivars of tomato against phytophagous Mites (Acari) under greenhouse conditions. Pak J Life Soc Sci 8:131–136

    Google Scholar 

  • Sheikh SA, Nizamani SM, Panhwar AA, Mirani BN (2013) Monitoring of pesticide residues in vegetables collected from markets of Sindh, Pakistan. Food Sci Technol Lett 4:41–45

    Google Scholar 

  • Shields R, Burnett W (1960) Determination of protein-bound carbohydrate in serum by a modified anthrone method. Anal Chem 32:885–886

    Article  CAS  Google Scholar 

  • Siddiqui ZS, Ahmed S (2006) Combined effects of pesticide on growth and nutritive composition of soybean plants. Pak J Bot 38:721–733

    Google Scholar 

  • Singh S, Eapen S, D’Souza SF (2006) Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant Bacopa monnieri L. Chemosphere 62:233–246

    Article  CAS  Google Scholar 

  • Sobrino-Plata J, Meyssen D, Cuypers A, Escobar C, Hernandez LE (2014) Glutathione is a key antioxidant metabolite to cope with mercury and cadmium stress. Plant Soil 377:369–381

    Article  CAS  Google Scholar 

  • Song NH, Yin X, Chen GF, Yang H (2007) Biological responses of wheat (Triticum aestivum) plants to the herbicide chlorotoluron in soils. Chemosphere 69:1779–1787

    Article  CAS  Google Scholar 

  • Spier JD, Davies FT, Che JR, Heinz KM, Bogran CE, Starman TW (2008) Do insecticides affect plant growth and development? Greenhouse Grower. http://aggie-horticulture.tamu.edu/faculty/davies/research/abstracts/pdfs. Accessed 10 Feb 2017

  • Srivastava S, Tripathi RD, Dwivedi UN (2004) Synthesis of phytochelatins and modulation of antioxidants in response to cadmium stress in Cuscuta reflexa—an angiospermic parasite. J Plant Physiol 161:665–674. https://doi.org/10.1078/0176-1617-01274

    Article  CAS  Google Scholar 

  • Szabados L, Savouré A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  Google Scholar 

  • Tabashnik BE (1989) Managing resistance with multiple pesticide tactics: theory, evidence, and recommendations. J Econ Entomol 82:1263–1269

    Article  CAS  Google Scholar 

  • Theymoli B, Sadasivam S (1987) Biochemical methods 2nd edition. Plants Foods Hum Nutr 37:41–46

    Article  Google Scholar 

  • Tort N, Oztork I, Guvensen A (2005) Effects of some fungicides on pollen morphology and anatomy of tomato (Lycopersicon esculentum mill.). Pak J Bot 37:23–30

    Google Scholar 

  • Wang ST, He XJ, An RD (2010) Responses of growth and antioxidant metabolism to nickel toxicity in Luffa cylindrica seedlings. J Anim Plant Sci 7:810–821

    Google Scholar 

  • Willekens H et al. (1997) Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plants. EMBO J 16:4806–4816

    Article  CAS  Google Scholar 

  • Wu GL, Cui EJ, Tao EL, Yang EH (2010) Fluroxypyr triggers oxidative damage by producing superoxide and hydrogen peroxide in rice (Oryza sativa). Ecotoxicol 19:24–132

    Article  CAS  Google Scholar 

  • Xia XJ, Huang YY, Wang L, Huang LF, Yu YL, Zhou YH, Yu JK (2006) Pesticides-induced depression of photosynthesis was alleviated by 24-epibrassinolide pretreatment in Cucumis sativus L. Pestic Biochem Physiol 86:42–48

    Article  CAS  Google Scholar 

  • Yang CM, Lee CN, Chou CH (2002) Effects of three allelopathic phenolics on chlorophyll accumulation of rice (Oryza sativa) seedlings: I. Inhibition of supply-orientation. Bot Bull Acad Sin 43:299–304

    CAS  Google Scholar 

  • Yardim EN, Edwards CA (2003) Effects of organic and synthetic fertilizer sources on pest and predatory insects associated with tomatoes. Phytoparasitica 4:324–329

    Article  Google Scholar 

  • Yildiztekin M, Kaya C, Tuna AL, Ashraf M (2015) Oxidative stress and antioxidative mechanisms in tomato (Solanum lycopersicum L.) plants sprayed with different pesticides. Pak J Bot 47:717–721

    CAS  Google Scholar 

  • Zhang WJ, Jiang FB, Oul JF (2011) Global pesticide consumption and pollution: with China as a focus. Proc Int Acad Ecol Environ Sci 1:125

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge all the staff at Department of Botany for their help and support during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azizullah Azizullah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study did not involve any animal or human samples and did not need any ethical approval for animal or human samples use.

Informed consent

This study did not involve any human or human samples.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakir, S.K., Irfan, S., Akhtar, B. et al. Pesticide-induced oxidative stress and antioxidant responses in tomato (Solanum lycopersicum) seedlings. Ecotoxicology 27, 919–935 (2018). https://doi.org/10.1007/s10646-018-1916-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-018-1916-6

Keywords

Navigation