Skip to main content
Log in

Detection of insecticide resistance in Bradysia odoriphaga Yang et Zhang (Diptera: Sciaridae) in China

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Bradysia odoriphaga Yang et Zhang is a destructive insect pest of Chinese chives. To understand the current status of insecticide resistance of B. odoriphaga in China, the sensitivity variation of eight field populations to six commonly used insecticides, including chlorpyrifos, phoxim, imidacloprid, thiamethoxam, clothianidin and beta-cypermethrin were evaluated. The results showed that almost all the tested B. odoriphaga populations had developed moderate to high resistance to chlorpyrifos and phoxim. There were different resistance levels found in the eight field populations among the three neonicotinoids, imidacloprid, thiamethoxam and clothianidin. Imidacloprid was very effective against B. odoriphaga in most tested populations except those from Yangzhou (10.35-fold) and Tangshan (14.56-fold). While four populations kept susceptible to thiamethoxam, the other four populations showed decreased susceptibility or low resistance. To clothianidin, five populations displayed moderate resistance, two populations displayed low resistance, and one population exhibited susceptibility, respectively. All the tested populations were resistance to beta-cypermethrin, the highest resistance was found in the Tangshan population with a resistance ratio of 172.56-fold. The results of this study provided valuable information for choosing insecticides for control and integrated resistance management of B. odoriphaga.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Arrington AE, Kennedy GG, Abney MR (2016) Applying insecticides through drip irrigation to reduce wireworm (Coleoptera: Elateridae) feeding damage in sweet potato. Pest Manage Sci 72:1133–1140. doi:10.1002/ps.4089

    Article  CAS  Google Scholar 

  • Ban LF, Zhang S, Huang ZY, He YP, Peng YQ, Gao CF (2012) Resistance monitoring and assessment of resistance risk to pymetrozine in Laodelphax striatellus (Hemiptera: Delphacidae). J Econ Entomol 105:2129–2135. doi:10.1603/EC12213

    Article  Google Scholar 

  • Chao SL, Dennehy TJ, Casida JE (1997) Whitefly (Hemiptera: Aleyrodidae) binding site for imidacloprid and related insecticides: a putative nicotinic acetylcholine receptor. J Econ Entomol 90:879–882

    Article  CAS  Google Scholar 

  • Chen CY, Mu W, Zhao YH, Li H, Zhang P, Wang QH, Liu F (2015) Biological activity of trans-2-hexenal against Bradysia odoriphaga (Diptera: Sciaridae) at different developmental stages. J Insect Sci 15:97. doi:10.1093/jisesa/iev075

    Google Scholar 

  • Chen CY, Wang CC, Guo JJ, Xu GS, Shi XY, Song DL (2016) Neonicotinoid insecticide resistance in Bradysia odoriphaga Yang et Zhang. Chin J Appl Entomol 53:1250–1254

    Google Scholar 

  • Chen CY, Zhao YH, Li H, Zhang P, Mu W, Liu F (2014) Biological activity of benzothiazole against Bradysia odoriphaga (Diptera: Sciaridae) at different developmental stages. Acta Entomol Sin 57:45–51

    CAS  Google Scholar 

  • Chen XW, Ma KS, Li F, Liang PZ, Liu Y, Guo TF, Song DL, Desneux N, Gao XW (2016) Sublethal and transgenerational effects of sulfoxaflor on the biological traits of the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae). Ecotoxicology 25:1841–1848. doi:10.1007/s10646-016-1732-9

    Article  CAS  Google Scholar 

  • Dang ZH, Dong J, Gao ZL, Jia H, Zhang K, Pan WL (2001) Biology and injury of Bradysia odoriphaga on leek in different types of cultivation. J Agric Univ Hebei 24:65–68

    Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106. doi:10.1146/annurev.ento.52.110405.091440

    Article  CAS  Google Scholar 

  • Feng HQ, Zheng FQ (1987) Studies of the occurrence and control of Bradysia Odoriphaga Yang et Zhang. J Shandong Agric Univ 18:71–80

    Google Scholar 

  • Gao HH, Zhai YF, Wang WB, Chen H, Zhou XH, Zhuang QY, Yu Y, Li RM (2016) Transcriptome analysis and discovery of genes relevant to development in Bradysia odoriphaga at three developmental stages. PLoS One 11:e0146812. doi:10.1371/journal.pone.0146812

    Article  Google Scholar 

  • Guo L, Desneux N, Sonoda S, Liang P, Han P, Gao X-W (2013) Sublethal and transgenerational effects of chlorantraniliprole on biological traits of the diamondback moth, Plutella xylostella L. Crop Prot 48:29–34. doi:10.1016/j.cropro.2013.02.009

    Article  CAS  Google Scholar 

  • Imahori Y, Suzuki Y, Uemura K, Kishioka I, Fujiwara H, Ueda Y, Chachin K (2004) Physiological and quality responses of Chinese chive leaves to low oxygen atmosphere. Postharvest Biol Biotechnol 31:295–303. doi:10.1016/j.postharvbio.2003.09.004

    Article  CAS  Google Scholar 

  • Jiang JD, Cao H, Zhang RF, Zhang MX, Li SP (2004) Effect of organophosphorous insecticides on Chinese chive insect pests and their degradation by pesticide-degrading bacterium. Chinese J Appl Ecol 15(8):1459–1462

    CAS  Google Scholar 

  • Jin T, Lin YY, Jin QA, Wen HB, Peng ZQ (2016) Population susceptibility to insecticides and the development of resistance in Bactrocera cucurbitae (Diptera: Tephritidae). J Econ Entomol 109:837–846. doi:10.1093/jee/tov349

    Article  Google Scholar 

  • Kang CY, Wu G, Miyata T (2006) Synergism of enzyme inhibitors and mechanisms of insecticide resistance in Bemisia tabaci (Gennadius) (Hom., Aleyrodidae). J Appl Entomol 130:377–385. doi:10.1111/j.1439-0418.2006.01075.x

    Article  CAS  Google Scholar 

  • Kumar U, Berliner J, Adak T, Rath P, Dey A, Pokhare S, Jambhulkar N, Panneerselvam P, Kumar A, Mohapatra S (2017) Non-target effect of continuous application of chlorpyrifos on soil microbes, nematodes and its persistence under sub-humid tropical rice-rice cropping system. Ecotoxicol Environ Saf 135:225–235. doi:10.1016/j.ecoenv.2016.10.003

    Article  CAS  Google Scholar 

  • Li XX, Ma XD, Xue M, Li ZX (2014a) Toxicity of insecticides to Bradysia odoriphaga at different temperature and their control effect in the fields. North Hortic 9:125–128

    Google Scholar 

  • Li WX, Yang YT, Xie W, Wu QJ, Xu BY, Wang SL, Zhu X, Wang SJ, Zhang YJ (2015a) Effects of temperature on the age-stage, two-sex life table of Bradysia odoriphaga (Diptera: Sciaridae). J Econ Entomol 108:126–134. doi:10.1093/jee/tou011

    Article  Google Scholar 

  • Li H, Zhao YH, Wang QH, Han JK, Liu F, Mu W (2015b) Comparison of systemic activity of neonicotinoid insecticides in leeks and its toxicity to larvae of Bradysia odoriphaga (Diptera: Sciaridae). Chin J Pestic Sci 17:156–162

    Google Scholar 

  • Li HJ, He XK, Zeng AJ, Liu YJ, Jiang SR (2007) Bradysia odoriphaga copulatory behavior and evidence of a female sex pheromone. J Agric Urban Entomol 24:27–34. doi:10.3954/1523-5475-24.1.27

    Article  Google Scholar 

  • Ma J, Chen S, Moens M, Han R, De Clercq P (2013) Efficacy of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) against the chive gnat, Bradysia odoriphaga. J Pest Sci 86:551–561. doi:10.1007/s10340-013-0497-7

    Article  Google Scholar 

  • Mau JL, Chen CP, Hsieh PC (2001) Antimicrobial effect of extracts from Chinese chive, cinnamon, and corni fructus. J Agric Food Chem 49:183–188. doi:10.1021/jf000263c

    Article  CAS  Google Scholar 

  • Misawa T, Kuninaga S (2013) First report of white leaf rot on Chinese chives caused by Rhizoctonia solani AG-2-1. J Gen Plant Pathol 79:280–283. doi:10.1007/s10327-013-0455-5

    Article  CAS  Google Scholar 

  • Mu W, Liu F, Jia ZM, He MH, Xiang GQ (2003) A simple and convenient rearing technique for Bradysia odoriphaga. Entomol J East China 12:87–89

    Google Scholar 

  • Qi SM, Wu YF, Li RM, Zhang SC, Zhuang QY, Zhou XH, Yu Y, Liu YJ (2016) Detection of insecticide resistance of Bradysia odoriphaga in Shandong province. Plant Prot 42:179–183

    CAS  Google Scholar 

  • Silva JE, Assis CPO, Ribeiro LMS, Siqueira HAA (2016) Field-evolved resistance and cross-resistance of Brazilian Tuta absoluta (Lepidoptera: Gelechiidae) populations to diamide insecticides. J Econ Entomol 109:2190–2195. doi:10.1093/jee/tow161

    Article  Google Scholar 

  • Smith LB, Kasai S, Scott JG (2016) Pyrethroid resistance in Aedes aegypti and Aedes albopictus: Important mosquito vectors of human diseases. Pestic Biochem Physiol 133:1–12. doi:10.1016/j.pestbp.2016.03.005

    Article  CAS  Google Scholar 

  • Tan WL, Wang ZM, Li CX, Chu HL, Xu Y, Dong YD et al. (2012) First report on co-occurrence knockdown resistance mutations and susceptibility to beta-cypermethrin in Anopheles sinensis from Jiangsu Province, China. PLoS One 7:e29242. doi:10.1371/journal.pone.0029242

    Article  CAS  Google Scholar 

  • Van Herk WG, Vernon RS, Tolman JH, Saavedra HO (2008) Mortality of a wireworm, Agriotes obscurus (Coleoptera: Elateridae), after topical application of various insecticides. J Econ Entomol 101:375–383. doi:10.1603/0022-0493(2008)101[375:MOAWAO]2.0.CO;2

    Article  Google Scholar 

  • Wang CX, Liu JP, Liu ZL, Xue M (2014) Occurrence characteristics and control measures of Bradysia odoriphaga on leek in winter facilities and open field cultivation. North Hortic 22:113–117

    Google Scholar 

  • Wang SY, Qi YF, Desneux N, Shi XY, Biondi A, Gao XW (2017) Sublethal and transgenerational effects of short-term and chronic exposures to the neonicotinoid nitenpyram on the cotton aphid. J Pest Sci 90:389–396. doi:10.1007/s10340-016-0770-7

    Article  Google Scholar 

  • Wang YG, Liu X, Li CL, Su TY, Jin JC, Guo YH et al. (2017) A survey of insecticide resistance in Aedes albopictus (Diptera: Culicidae) during a 2014 dengue fever outbreak in Guangzhou, China. J Econ Entomol 110:239–244. doi:10.1093/jee/tow254

    Google Scholar 

  • Xiao D, Yang Y, Desneux N, Han P, Gao XW (2015) Assessment of sublethal and transgenerational effects of pirimicarb on the wheat aphids Rhopalosiphum padi and Sitobion avenae. PLoS One 10:e0128936. doi:10.1371/journal.pone.0128936

    Article  Google Scholar 

  • Xue M, Yuan L, Man XU (2002) The olfactory response of adults to volatiles and compare of toxicity of different insecticides to the adults and larvae of Bradysia odoriphaga. Chin J Pestic Sci 4:50–56

    CAS  Google Scholar 

  • Yabuki Y, Mukaida Y, Saito Y, Oshima K, Takahashi T, Muroi E, Hashimoto K, Uda Y (2010) Characterisation of volatile sulphur-containing compounds generated in crushed leaves of Chinese chive (Allium tuberosum Rottler). Food Chem 120:343–348. doi:10.1016/j.foodchem.2009.11.028

    Article  CAS  Google Scholar 

  • Yang YT, Li WX, Xie W, Wu QJ, Xu BY, Wang SL, Li CR, Zhang YJ (2015) Development of Bradysia odoriphaga (Diptera: Sciaridae) as affected by humidity: an age–stage, two-sex, life-table study. Appl Entomol Zool 50:3–10. doi:10.1007/s13355-014-0295-6

    Article  Google Scholar 

  • Yu XY, Rao G, Liao HF, Li XJ (2003) Insecticidal activities of several botanical secondary metabolites against larvae of Bradysia odoriphaga Yang et Zhang. Jiangsu J Agric Sci 19:228–232

    Google Scholar 

  • Zhang A, Kayser H, Maienfisch P, Casida JE (2000) Insect nicotinic acetylcholine receptor: conserved neonicotinoid specifity of [3H] imidacloprid binding site. J Neurochem 75:1294–1303. doi:10.1046/j.1471-4159.2000.751294.x

    Article  CAS  Google Scholar 

  • Zhang H, Mallik A, Zeng RS (2013) Control of panama disease of banana by rotating and intercropping with Chinese chive (Allium tuberosum Rottler): role of plant volatiles. J Chem Ecol 39:243–252. doi:10.1007/s10886-013-0243-x

    Article  CAS  Google Scholar 

  • Zhang P, Chen CY, Li H, Liu F, Mu W (2014a) Selective toxicity of seven neonicotinoid insecticides to fungus gnat Bradysia odoriphaga and earthworm Eisenia foetida. Acta Phytophylacica Sin 41:79–86

    Google Scholar 

  • Zhang P, Liu F, Mu W, Wang QH, Li H, Chen CY (2014b) Life table study of the effects of sublethal concentrations of thiamethoxam on Bradysia odoriphaga Yang and Zhang. Pestic Biochem Physiol 111:31–37. doi:10.1016/j.pestbp.2014.04.003

    Article  CAS  Google Scholar 

  • Zhang XL, Liao X, Mao KK, Zhang KX, Wan H, Li JH (2015) Insecticide resistance monitoring and correlation analysis of insecticides in field populations of the brown planthopper Nilaparvata lugens (stal) in China 2012–2014. Pestic Biochem Physiol 132:13–20. doi:10.1016/j.pestbp.2015.10.003

    Article  Google Scholar 

  • Zhao YH, Zhang P, Zhai YB, Chen CY, Wang QH, Han JK, Zhang ZQ, Liu F, Mu W (2016) Sublethal concentration of benzothiazole adversely affect development, reproduction and longevity of Bradysia odoriphaga (Diptera: Sciaridae). Phytoparasitica 44:115–124. doi:10.1007/s12600-016-0506-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the insect keeper who participated in this work.

Funding

This study was funded by the Special Fund for Agro-scientific Research in the Public Interest from the Ministry of Agriculture of China (grant number: 201303027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueyan Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Shi, X., Desneux, N. et al. Detection of insecticide resistance in Bradysia odoriphaga Yang et Zhang (Diptera: Sciaridae) in China. Ecotoxicology 26, 868–875 (2017). https://doi.org/10.1007/s10646-017-1817-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-017-1817-0

Keywords

Navigation