Skip to main content
Log in

Fitness costs of resistance to Bti toxins in the dengue vector Aedes aegypti

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Sustainable insect vector disease control strategies involve delaying the evolution of resistance to insecticides in natural populations. The evolutionary dynamics of resistance in the field is highly dependent on the fitness cost of resistance alleles. To successfully manage resistance evolution in target species, it is not only important to find evidence of fitness cost in resistant insects, but also to determine at which stage of the insect’s life it is expressed. Here, we show that resistance costs to the bacterio-insecticide Bacillus thuringiensis subsp. israelensis (Bti) are expressed at all the life-stages of the dengue vector Aedes aegypti, including egg survival, larval development time, and female fecundity. We show that the storage of eggs for 4 months is long enough to counter-select resistance alleles. This suggests that Bti resistance is not likely to evolve in temperate climates where most mosquito species overwinter as eggs. In tropical regions with a rapid turn-over of generations, resistance alleles are likely to be counter-selected in only few generations without treatment through fitness costs expressed in terms of larval development time and female fecundity. We discuss the implications of our findings in terms of sustainable management strategies in light of the challenge of preserving the long-term efficiency of this environmentally safe anti-mosquito bio-insecticide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agnew P, Koella JC (1999) Life history interactions with environmental conditions in a host-parasite relationship and the parasite’s mode of transmission. Evol Ecol 13:67–89

    Article  Google Scholar 

  • Amorim LB, de Barros RA, Chalegre KDD, de Oliveira CMF, Regis LN, Silva-Filha M (2010) Stability of Culex quinquefasciatus resistance to Bacillus sphaericus evaluated by molecular tools. Insect Biochem Mol Biol 40:311–316

    Article  CAS  Google Scholar 

  • Antonio GE, Sanchez D, Williams T, Marina CF (2009) Paradoxical effects of sublethal exposure to the naturally derived insecticide spinosad in the dengue vector mosquito, Aedes aegypti. Pest Manag Sci 65:323–326

    Article  CAS  Google Scholar 

  • Bauce E, Bidon T, Berthiaume R (2002) Effects of food nutritive quality and Bacillus thuringiensis on feeding behaviour food utilization and larval growth of spruce budworm Choristoneura fumiferana (Clem.) when exposed as fourth- and sixth-instar larvae. Agric For Entomol 4:57–70

    Article  Google Scholar 

  • Becker N, Ludwig M (1993) Investigations on possible resistance in Aedes vexans field populations after a 10-year application of Bacillus thuringiensis israelensis. J Am Mosq Control Assoc 9:221–224

    CAS  Google Scholar 

  • Benedict MQ, Levine RS, Hawley WA, Lounibos LP (2007) Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector-Borne Zoonotic Dis 7:76–85

    Article  Google Scholar 

  • Bergelson J, Purrington CB (1996) Surveying patterns in the cost of resistance in plants. Am Nat 148:536–558

    Article  Google Scholar 

  • Berticat C, Bonnet J, Duchon S, Agnew P, Weill M, Corbel V (2008) Costs and benefits of multiple resistance to insecticides for Culex quinquefasciatus mosquitoes. BMC Evol Biol 8:104

    Article  Google Scholar 

  • Blackmore MS, Lord CC (2000) The relationship between size and fecundity in Aedes albopictus. J Vector Ecol 25:212–217

    CAS  Google Scholar 

  • Bonin A, Paris M, Tetreau G, David JP, Despres L (2009) Candidate genes revealed by a genome scan for mosquito resistance to a bacterial insecticide: sequence and gene expression variations. BMC Genomics 10:551

    Article  Google Scholar 

  • Bourguet D, Guillemaud T, Chevillon C, Raymond M (2004) Fitness costs of insecticide resistance in natural breeding sites of the mosquito Culex pipiens. Evolution 58:128–135

    Google Scholar 

  • Boyer S, Tilquin M, Ravanel P (2007) Differential sensitivity to Bacillus thuringiensis var. israelensis and temephos in field mosquito populations of Ochlerotatus cataphylla (Diptera: Culicidae): Toward resistance? Environ Toxicol Chem 26:157–162

    Article  CAS  Google Scholar 

  • Bravo A, Gill SS, Soberon M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:423–435

    Article  CAS  Google Scholar 

  • Briegel H (1990) Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti. J Insect Physiol 36:165–172

    Article  Google Scholar 

  • Butko P (2003) Cytolytic toxin Cyt1A and its mechanism of membrane damage: data and hypotheses. Appl Environ Microbiol 69:2415–2422

    Article  CAS  Google Scholar 

  • Caprio MA (2001) Source-sink dynamics between transgenic and non-transgenic habitats and their role in the evolution of resistance. J Econ Entomol 94:698–705

    Article  CAS  Google Scholar 

  • Carriere Y, Tabashnik BE (2001) Reversing insect adaptation to transgenic insecticidal plants. Proc Roy Soc Lond B Biol Sci 268:1475–1480

    Article  CAS  Google Scholar 

  • Charlesworth B (1980) The cost of sex in relation to mating system. J Theor Biol 84:655–671

    Article  CAS  Google Scholar 

  • Chevillon C, Bernard C, Marquine M, Pasteur N (2001) Resistance to Bacillus sphaericus in Culex pipiens (Diptera: Culicidae) interaction between recessive mutants and evolution in southern France. J Med Entomol 38:657–664

    Article  CAS  Google Scholar 

  • Coustau C, Chevillon C, ffrench-Constant R (2000) Resistance to xenobiotics and parasites: can we count the cost? Trends Ecol Evol 15:378–383

    Article  Google Scholar 

  • Crickmore N, Zeigler DR, Feitelson J, Schnepf E, Van Rie J, Lereclus D, Baum J, Dean DH (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62:807

    CAS  Google Scholar 

  • De Oliveira CMF, Costa F, Beltran JFN, Silva-Filha MH, Regis L (2003) Biological fitness of a Culex quinquefasciatus population and its resistance to Bacillus sphaericus. J Am Mosq Control Assoc 19:125–129

    Google Scholar 

  • Delecluse A, Poncet S, Klier A, Rapoport G (1993) Expression of CryIVA and CryIV4B genes, independently or in combination, in a crystal-negative strain of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 59:3922–3927

    CAS  Google Scholar 

  • Ferre J, Van Rie J (2002) Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu Rev Entomol 47:501–533

    Article  CAS  Google Scholar 

  • Gassmann AJ, Carriere Y, Tabashnik BE (2009) Fitness costs of insect resistance to Bacillus thuringiensis. Annu Rev Entomol 54:147–163

    Article  CAS  Google Scholar 

  • Georghiou GP, Wirth MC (1997) Influence of exposure to single versus multiple toxins of Bacillus thuringiensis subsp. israelensis on development of resistance in the mosquito Culex quinquefasciatus (Diptera: Culicidae). Appl Environ Microbiol 63:1095–1101

    CAS  Google Scholar 

  • Gilliland LU, McKinney EC, Asmussen MA, Meagher RB (1998) Detection of deleterious genotypes in multigenerational studies I. Disruptions in individual Arabidopsis actin genes. Genetics 149:717–725

    CAS  Google Scholar 

  • Goldman IF, Arnold J, Carlton BC (1986) Selection for resistance to Bacillus thuringiensis subspecies israelensis in field and laboratory populations of the mosquito Aedes aegypti. J. Invertebr Pathol 47:317–324

    Article  CAS  Google Scholar 

  • Griffitts JS, Aroian RV (2005) Many roads to resistance: how invertebrates adapt to Bt toxins. Bioessays 27:614–624

    Article  Google Scholar 

  • Guillemaud T, Lenormand T, Bourguet D, Chevillon C, Pasteur N, Raymond M (1998) Evolution of resistance in Culex pipiens: allele replacement and changing environment. Evolution 52:443–453

    Article  Google Scholar 

  • Hardstone MC, Lazzaro BP, Scott JG (2009) The effect of three environmental conditions on the fitness of cytochrome P450 monooxygenase-mediated permethrin resistance in Culex pipiens quinquefasciatus. BMC Evol Biol 9:42

    Article  Google Scholar 

  • Janmaat AF, Myers JH (2005) The cost of resistance to Bacillus thuringiensis varies with the host plant of Trichoplusia ni. Proc Roy Soc Lond B Biol Sci 272:1031–1038

    Google Scholar 

  • Kishony R, Leibler S (2003) Environmental stresses can alleviate the average deleterious effect of mutations. J Biol 2:14

    Article  Google Scholar 

  • Labbe P, Berticat C, Berthomieu A, Unal S, Bernard C, Weill M, Lenormand T (2007) Forty years of erratic insecticide resistance evolution in the mosquito Culex pipiens. Plos Genet 3:2190–2199

    Article  CAS  Google Scholar 

  • Labbe P, Sidos N, Raymond M, Lenormand T (2009) Resistance gene replacement in the mosquito Culex pipiens: fitness estimation from long-term cline series. Genetics 182:303–312

    Article  CAS  Google Scholar 

  • Lacey LA (2007) Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control. J Am Mosq Control Assoc 23:133–163

    Article  CAS  Google Scholar 

  • Lacey LA, Siegel JP (2000) Safety and ecotoxicology of entomopathogenic bacteria. In: Charles JF, Delécluse A, Nielsen-LeRoux C (eds) Entomopathogenic bacteria: from laboratory to field application. Kluwer Academic Publishers, Dordrecht, pp 253–273

    Google Scholar 

  • Lecadet MM, Blondel MO, Ribier J (1980) Generalized transduction in Bacillus thuringiensis var berliner-1715 using bacteriophage-Cp-54ber. J Gen Microbiol 121:203–212

    CAS  Google Scholar 

  • Lehmann T, Dalton R, Kim EH, Dahl E, Diabate A, Dabire R, Dujardin JP (2006) Genetic contribution to variation in larval development time, adult size, and longevity of starved adults of Anopheles gambiae. Infect Genet Evol 6:410–416

    Article  CAS  Google Scholar 

  • Leisnham PT, Lounibos LP, O’Meara GF, Juliano SA (2009) Interpopulation divergence in competitive interactions of the mosquito Aedes albopictus. Ecology 90:2405–2413

    Article  CAS  Google Scholar 

  • Lenormand T, Raymond M (1998) Resistance management: the stable zone strategy. Proc Roy Soc Lond B Biol Sci 265:1985–1990

    Article  Google Scholar 

  • Lenormand T, Bourguet D, Guillemaud T, Raymond M (1999) Tracking the evolution of insecticide resistance in the mosquito Culex pipiens. Nature 400:861–864

    Article  CAS  Google Scholar 

  • Manceva SD, Pusztai-Carey M, Russo PS, Butko P (2005) A detergent-like mechanism of action of the cytolytic toxin Cyt1A from Bacillus thuringiensis var. israelensis. Biochemistry 44:589–597

    Article  CAS  Google Scholar 

  • Moeur JE, Istock CA (1980) Ecology and evolution of the pitcher-plant mosquito.4. Larval influence over adult reproductive-performance and longevity. J Anim Ecol 49:775–792

    Article  Google Scholar 

  • Mori A, Romero-Severson J, Black WC, Severson DW (2008) Quantitative trait loci determining autogeny and body size in the Asian tiger mosquito (Aedes albopictus). Heredity 101:75–82

    Article  CAS  Google Scholar 

  • Onstad DW, Gould F (1998) Modeling the dynamics of adaptation to transgenic maize by European corn borer (Lepidoptera: Pyralidae). J Econ Entomol 91:585–593

    Google Scholar 

  • Packer MJ, Corbet PS (1989) Size variation and reproductive success of female Aedes punctor (Diptera: Culicidae). Ecol Entomol 14:297–309

    Article  Google Scholar 

  • Paris M, Roux F, Berard A, Reboud X (2008) The effects of the genetic background on herbicide resistance fitness cost and its associated dominance in Arabidopsis thaliana. Heredity 101:499–506

    Article  CAS  Google Scholar 

  • Paris M, Boyer S, Bonin A, Collado A, David JP, Despres L (2010) Genome scan in the mosquito Aedes rusticus: population structure and detection of positive selection after insecticide treatment. Mol Ecol 19:325–337

    Article  Google Scholar 

  • Paris M, Tetreau G, Laurent F, Lelu M, Despres L, David JP (2011) Persistence of Bacillus thuringiensis israelensis (Bti) in the environment induces resistance to multiple Bti toxins in mosquitoes. Pest Manag Sci 67:122–128

    Article  CAS  Google Scholar 

  • Paul A, Harrington LC, Zhang L, Scott JG (2005) Insecticide resistance in Culex pipiens from New York. J Am Mosq Control Assoc 21:305–309

    Article  CAS  Google Scholar 

  • Poncet S, Anello G, Delecluse A, Klier A, Rapoport G (1993) Role of The CryIVD polypeptide in the overall toxicity of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 59:3928–3930

    CAS  Google Scholar 

  • R Development Core Team (2005) R : A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.Rproject.org, ISBN 3-900051-900007-900050

  • Regis L, Silva-Filha MH, Nielsen-LeRoux C, Charles JF (2001) Bacteriological larvicides of dipteran disease vectors. Trends Parasitol 17:377–380

    Article  CAS  Google Scholar 

  • Roush RT, McKenzie JA (1987) Ecological genetics of insecticide and acaricide resistance. Annu Rev Entomol 32:361–380

    Article  CAS  Google Scholar 

  • Roux F, Camilleri C, Berard A, Reboud X (2005a) Multigenerational versus single generation studies to estimate herbicide resistance fitness cost in Arabidopsis thaliana. Evolution 59:2264–2269

    CAS  Google Scholar 

  • Roux F, Camilleri C, Giancola S, Brunel D, Reboud X (2005b) Epistatic interactions among herbicide resistances in Arabidopsis thaliana: the fitness cost of multiresistance. Genetics 171:1277–1288

    Article  CAS  Google Scholar 

  • Roux F, Paris M, Reboud X (2008) Delaying weed adaptation to herbicide by environmental heterogeneity: a simulation approach. Pest Manag Sci 64:16–29

    Article  CAS  Google Scholar 

  • Saleh MS, El-Meniawi FA, Kelada NL, Zahran HM (2003) Resistance development in mosquito larvae Culex pipiens to the bacterial agent Bacillus thuringiensis var. israelensis. J Appl Entomol (Zeitschrift fur Angewandte Entomologie) 127:29–32

    Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775

    CAS  Google Scholar 

  • Strickman D, Kittayapong P (2003) Dengue and its vectors in Thailand: calculated transmission risk from total pupal counts of Aedes aegypti and association of wing-length measurements with aspects of the larval habitat. Am J Trop Med Hyg 68:209–217

    Google Scholar 

  • Tabashnik BE, Croft BA (1982) Managing pesticide resistance In crop-arthropod complexes: interactions between biological and operational factors. Environ Entomol 11:1137–1144

    Google Scholar 

  • Tabashnik BE, Dennehy TJ, Carriere Y (2005) Delayed resistance to transgenic cotton in pink bollworm. Proc Natl Acad Sci USA 102:15389–15393

    Article  CAS  Google Scholar 

  • Tilquin M, Paris M, Reynaud S, Despres L, Ravanel P, Geremia R (2008) Long lasting persistence of Bacillus thuringiensis subsp. israelensis (Bti) in mosquito natural habitats. PLoS ONE 3:e3432

    Article  Google Scholar 

  • Vila-Aiub MM, Neve P, Powles SB (2009) Fitness costs associated with evolved herbicide resistance alleles in plants. New Phytol 184:751–767

    Article  CAS  Google Scholar 

  • World Health Organization (2005) Guidelines for laboratory and field testing of mosquito larvicides. WHO/CDS/WHOPES/GCDPP/2005.13

  • Wu D, Johnson JJ, Federici BA (1994) Synergism of mosquitocidal toxicity between CytA and CryIVD proteins using inclusions produced from cloned genes of Bacillus thuringiensis. Mol Microbiol 13:965–972

    Article  CAS  Google Scholar 

  • Yan G, Severson DW, Christensen BM (1997) Costs and benefits of mosquito refractoriness to malaria parasites: implications for genetic variability of mosquitoes and genetic control of malaria. Evolution 51:441–450

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Joelle Patoureau, Sylvie Veyrenc, Fabien Laurent and Sophia Weeb for technical assistance, and Brian Federici and Maria-Helena Neves Lobo Silva-Filha for providing recombinant Bti strains. This study was supported by the French National Research Agency (project ANR-08-CES-006-01 DIBBECO), a grant for MP and LD from the French Rhône-Alpes region (grant #0501545401) and a collaborative grant awarded by the Démoustication Rhône-Alpes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Despres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paris, M., David, JP. & Despres, L. Fitness costs of resistance to Bti toxins in the dengue vector Aedes aegypti . Ecotoxicology 20, 1184–1194 (2011). https://doi.org/10.1007/s10646-011-0663-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-011-0663-8

Keywords

Navigation