Skip to main content

Advertisement

Log in

Transfer modelling and toxicity evaluation of the effluent from an installation of cleansing and uranium recovery using a battery of bioassays

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

On July 7, 2008, a leak of effluent from an Installation of Cleansing and Uranium Recovery (Tricastin, France) led to the spillage of uranium in a stream. The acute toxicity of the effluent was evaluated, and compared to the toxicity of uranium nitrate in bioassays using several organisms: Chlamydomonas reinhardtii, Daphnia magna, Chironomus riparius and Danio rerio. A sediment bioassay was also performed on C. riparius using water and sediment sampled along the river. Results showed that effluent EC50 72 h was 0.65 mg U/l for algae and LC50 48 h was 1.67 mg U/l for daphnia, while values obtained for uranium nitrate were higher. The LC50 96 h of effluent to C. riparius was 22.7 mg U/l, similar to value for uranium nitrate; the sediment collected was not toxic to C. riparius larvae. The LOEC of effluent and uranium nitrate on HT50 of D. rerio were similar (0.03 mg U/l), but larvae were more sensitive to uranium nitrate than to effluent. Our results suggest that other substances contained in the effluent could potentially be toxic to wildlife in association with uranium. In parallel, the modelling of the transfers based on uranium measurements in the surface water was used to fill data gaps and assess the impact along the river. These results provided an estimate of exposure conditions that occurred along the river. This approach allowed us to see that the risk to ecosystem during this incident was certainly low and concerned a short period of time, but it could have existed at least for some species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • AFNOR (1985) Nf T 90–303 essai des eaux : Détermination de la toxicité aiguë d’une substance vis-à-vis de Brachydanio rerio. Afnor, Paris

    Google Scholar 

  • AFNOR (2004) Nf XP T 90–339-1 qualité de l’eau: Détermination de la toxicité des sédiments d’eau douce vis-à-vis de Chironomus riparius. Partie 1 : Sédiments naturels. Afnor, Paris

    Google Scholar 

  • Antunes SC, de Figueiredo DR, Marques SM, Castro BB, Pereira R, Goncalves F (2007) Evaluation of water column and sediment toxicity from an abandoned uranium mine using a battery of bioassays. Sci Total Environ 74(2–3):252–259

    Google Scholar 

  • AREVA (2008) Point sur l’incident à l’usine Socatri : Suivi des mesures environnementales. http://www.Areva-nc.Fr/scripts/areva-nc/publigen/content/templates/show.Asp?P=7818&l=fr

  • Banerjee BD, Seth V, Ahmed RS (2001) Pesticide-induced oxidative stress: perspectives and trends. Rev Environ Health 16(1):1–40

    CAS  Google Scholar 

  • Barata C, Baird DJ, Markich SJ (1998) Influence of genetic and environmental factors on the tolerance of Daphnia magna Straus to essential and non-essential metals. Aquat Toxicol 42(2):115–137

    Article  CAS  Google Scholar 

  • Barillet S, Buet A, Adam C, Devaux A (2005) Does uranium exposure induce genotoxicity in the teleostean Danio rerio? Radioprotection 40(Suppl 1):175–181

    Article  Google Scholar 

  • Barillet S, Adam C, Palluel O, Devaux A (2007) Bioaccumulation, oxidative stress, and neurotoxicity in Danio rerio exposed to different isotopic compositions of uranium. Environ Toxicol Chem 26(3):497–505

    Article  CAS  Google Scholar 

  • Bourrachot S, Simon O, Gilbin R (2008) The effects of waterborne uranium on the hatching success, development, and survival of early life stages of zebrafish (Danio rerio). Aquat Toxicol 90(1):29–36

    Article  CAS  Google Scholar 

  • Boyer P, Beaugelin-Seiller K, Ternat F, Anselmet F, Amielh M (2005) A dynamic box model to predict the radionuclide behaviour in rivers for medium and long-term periods. Radioprotection 40(Suppl 1):S307–S313

    Article  Google Scholar 

  • Dave G, Xiu R (1991) Toxicity of mercury, copper, nickel, lead, and cobalt to embryos and larvae of zebrafish, brachydanio rerio. Arch Environ Cont Tox 21(1):126–134

    Article  CAS  Google Scholar 

  • Denison FH, Garnier-Laplace J (2005) The effects of database parameter uncertainty on uranium(VI) equilibrium calculations. Geochim Cosmochim Acta 69(9):2183–2191

    Article  CAS  Google Scholar 

  • Dias V, Vasseur C, Bonzom JM (2008) Exposure of Chironomus riparius larvae to uranium: effects on survival, development time, growth, and mouthpart deformities. Chemosphere 71(3):574–581

    Article  CAS  Google Scholar 

  • Duchesne S, Boyer P, Beaugelin-Seiller K (2003) Sensitivity and uncertainty analysis of a model computing radionuclides transfers in fluvial ecosystems (Casteaur): application to 137cs accumulation in chubs. Ecol Model 166(3):257–276

    Article  CAS  Google Scholar 

  • Elendt BP (1990) Selenium deficiency in crustacea—an ultrastructural approach to antennal damage in Daphnia magna Straus. Protoplasma 154(1):25–33

    Article  CAS  Google Scholar 

  • Environnement Canada (1997) Méthode d’essai biologique: Essai de survie et de croissance des larves dulcicoles de chironomes (Chironomus tentans ou Chironomus riparius) dans les sédiments. Ottawa, Ontario

    Google Scholar 

  • European Commission (2003) Technical guidance document in support of commission directive 93/67/EEC on risk assessment for new notified substances and commission regulation (EC) no 1488/94 on risk assessment for existing substances. Directive 98/8/EC of the European parliament and of the council concerning the placing of biocidal products on the market; part ii. Luxembourg

  • Fisher HB, List EJ, Koh RCY, Imberger J, Brooks NH (1979) Mixing in inland and coastal waters. Academic Press, London

    Google Scholar 

  • Fortin C, Dutel L, Garnier-Laplace J (2004) Uranium complexation and uptake by a green alga in relation to chemical speciation: the importance of the free uranyl ion. Environ Toxicol Chem 23(4):974–981

    Article  CAS  Google Scholar 

  • Fraysse B, Mons R, Garric J (2006) Development of a zebrafish 4-day embryo-larval bioassay to assess toxicity of chemicals. Ecotox Environ Safe 63(2):253–267

    Article  CAS  Google Scholar 

  • Holdway DA (1992) Uranium toxicity to two species of Australian tropical fish. Sci Total Environ 125:137–158

    Article  CAS  Google Scholar 

  • INERIS (2005) Chrome et ses dérivés Fiche de données toxicologiques et environnementales des substances chimiques. INERIS, Paris

    Google Scholar 

  • IRSN (2008) Rejet accidentel d’uranium de l’usine Socatri : L’IRSN rend publics ses résultats d’analyse sur la composition isotopique de l’uranium contenu dans les effluents. In: http://www.Irsn.Fr/fr/actualites_presse/communiques_et_dossiers_de_presse/pages/socatri_tricastin_composition_isotopique_uranium_effluents.Aspx

  • Kaniewska-Prus M (1982) The effect of ammonia, chlorine, and chloramine toxicity on the mortality of Daphnia magna Straus. Pol Arch Hydrobiol 29(3–4):607–624

    CAS  Google Scholar 

  • Kurnaz A, Kucukomeroglu B, Keser R, Okumusoglu NT, Korkmaz F, Karahan G, Cevik U (2007) Determination of radioactivity levels and hazards of soil and sediment samples in Firtina valley (Rize, Turkey). Appl Radiat Isotopes 65(11):1281–1289

    Article  CAS  Google Scholar 

  • Labrot F, Ribera D, Saint Denis M, Narbonne JF (1996) In vitro and in vivo studies of potential biomarkers of lead and uranium contamination: lipid peroxidation, acetylcholinesterase, catalase and glutathione peroxidase activities in three non-mammalian species. Biomarkers 1(1):21–28

    Article  CAS  Google Scholar 

  • Liden LH, Burton DT (1977) Survival of juvenile atlantic menhaden (brevoortia tyrannus) and spot (leiostomus xanthurus) exposed to bromine chloride and chlorine treated estuarine waters. J Environ Sci Health A A12(8):375–388

    Article  CAS  Google Scholar 

  • Martins J, Oliva Teles L, Vasconcelos V (2007) Assays with Daphnia magna and Danio rerio as alert systems in aquatic toxicology. Environ Int 33(3):414–425

    Article  CAS  Google Scholar 

  • McKim JM (1985) Early life stage toxicity tests. In: Rand GM, Petrocellli SR (eds) Fundamentals of aquatic toxicology. Hemisphere, New York, pp 58–95

    Google Scholar 

  • Metcalfe-Smith JL, Holtze KE, Sirota GR, Reid JJ, de Solla SR (2003) Toxicity of aqueous and sediment-associated fluoride to freshwater organisms. Environ Toxicol Chem 22(1):161–166

    Article  CAS  Google Scholar 

  • Oberdorff T, Pont D, Hugueny B, Belliard J, Berrebi Dit Thomas R, Porcher JP (2002) Adaptation et validation d’un indice poisson (FBI) pour l’évaluation de la qualité biologique des cours d’eau français. Bulletin Français de la Pêche et de la Pisciculture (365–366):405–433

  • OECD (1984) OECD guidelines for testing of chemicals. Test 201: Algal growth inhibition test

  • OECD (1995) Guidance document for aquatic effects assessment. Environment monograph

  • OECD (2000a) OECD guidelines for testing of chemicals, revised proposal. Test 202: Daphnia sp, acute immobilization test

  • OECD (2000b) OECD guidelines for testing of chemicals. Test 219: Sediment-water chironomid toxicity test using spiked water

  • OECD (2004) OECD guidelines for testing of chemicals, advance copy. Test 210 : Fish, early-life stage toxicity test

  • Pawlisz AV, Kent RA, Schneider UA, Jefferson C (1997) Canadian water quality guidelines for chromium. Environ Toxicol Water Qual 12(2):123–183

    Article  CAS  Google Scholar 

  • R Development Core Team (2004) R: a language and environment for statistical computing. Vienna, Austria

    Google Scholar 

  • Ribera D, Labrot F, Tisnerat G, Narbonne JF (1996) Uranium in the environment: occurrence, transfer, and biological effects. Rev Environ Contam T 146:53–89

    CAS  Google Scholar 

  • Ritz C, Streibig JC (2005) Bioassay analysis using R. J Stat Softw 12:1–22

    Google Scholar 

  • Ruoppa M, Nakari T (1988) The effects of pulp and paper industry (Tervakoski Oy) waste waters on the fertilized eggs and alevins of zebrafish and on the physiology of rainbow trout. Water Sci Technol 20(2):201

    Google Scholar 

  • Sheppard SC, Sheppard MI, Gallerand MO, Sanipelli B (2005) Derivation of ecotoxicity thresholds for uranium. J Environ Radioactiv 79(1):55–83

    Article  Google Scholar 

  • Sueoka N, Chiang KS, Kates JR (1967) Deoxyribonucleic acid replication in meiosis of Chlamydomonas reinhardtii. I Isotopic transfer experiments with a strain producing eight zoospores. J Mol Biol 25(1):47–66

    Article  CAS  Google Scholar 

  • USEPA (1998) Guidelines for ecological risk assessment. Risk Assessment Forum EPA/630/R-95/002F

  • Videau C, Khalanski M, Penot M (1979) Preliminary results concerning effects of chlorine on monospecific marine phytoplankton. J Exp Mar Biol Ecol 36(2):111–123

    Article  CAS  Google Scholar 

  • Yosha SF, Cohen GM (1979) Effect of intermittent chlorination of developing zebrafish embryos (Brachydanio rerio). B Environ Contam Tox 21(4–5):703–710

    Article  CAS  Google Scholar 

  • Zeman FA, Gilbin R, Alonzo F, Lecomte-Pradines C, Garnier-Laplace J, Aliaume C (2008) Effects of waterborne uranium on survival, growth, reproduction and physiological processes of the freshwater cladoceran Daphnia magna. Aquat Toxicol 86(3):370–378

    Article  CAS  Google Scholar 

  • Zurita JL, Jos A, Camean AM, Salguero M, Lopez-Artiguez M, Repetto G (2007) Ecotoxicological evaluation of sodium fluoroacetate on aquatic organisms and investigation of the effects on two fish cell lines. Chemosphere 67(1):1–12

    Article  CAS  Google Scholar 

Download references

Acknowledgments

N. Dal-Pos and P. Signoret are acknowledged for their technical assistance in midge bioassays. SOCATRI industry is acknowledged for providing the effluent sample. This study was supported by the ENVIRHOM project of IRSN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Béatrice Gagnaire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gagnaire, B., Boyer, P., Bonzom, JM. et al. Transfer modelling and toxicity evaluation of the effluent from an installation of cleansing and uranium recovery using a battery of bioassays. Ecotoxicology 20, 187–201 (2011). https://doi.org/10.1007/s10646-010-0570-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-010-0570-4

Keywords

Navigation