Skip to main content

Advertisement

Log in

Catastrophic Damages and the Optimal Carbon Tax Under Loss Aversion

  • Published:
Environmental and Resource Economics Aims and scope Submit manuscript

Abstract

Recently, economists have begun to incorporate tipping points and catastrophic events into economy-climate models. It has been shown that the inclusion of tipping points amplifies the economic impacts of climate change and leads to much higher estimates of the social cost of carbon compared to the model that includes only non-catastrophic damages. All the estimates under catastrophic damages come from studies that assume full rationality. However, there is ample evidence that consumers exhibit loss aversion, meaning that they feel losses more strongly than equivalent gains. In this paper, we derive the optimal carbon tax in the Ramsey model under loss aversion and tipping points. We calibrate the model to generate a similar rate of return on capital, and thus pathways of capital and consumption, as a model with rational consumers in the business-as-usual scenario. We find that such a calibrated model generates an optimal carbon tax that is about three times higher than in the model with rational consumers in the optimal (OPT) scenario. A catastrophic event, which reduces the productivity of capital, results in a greater utility loss of loss-averse consumers compared to rational consumers. The optimal tax makes loss-averse consumers increase their precautionary savings before the shock, smoothing their consumption, which reduces welfare loss after the catastrophic event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. It is important to note that although the current versions of the DICE model ignore catastrophic events, its earlier versions accounted for them (Nordhaus and Boyer 2003; see for discussion Howard 2014).

  2. See Appendix 2 and Polasky et al. (2011) for detailed calculations.

References

  • Ackerman F, Stanton EA, Bueno R (2013) Epstein–Zin utility in DICE: is risk aversion irrelevant to climate policy? Environ Resource Econ 56(1):73–84

    Article  Google Scholar 

  • Alesina A, Passarelli F (2019) Loss aversion in politics. Am J Polit Sci 63(4):936–947

    Article  Google Scholar 

  • Alley R, Marotzke J, Nordhaus WD, Overpeck J, Peteet D, Pielke R, Pierrehumbert R, Rhines P, Stocker T, Talley L, Wallace J (2003) Abrupt climate change. Science 299(5615):2005–2010

    Article  Google Scholar 

  • Bansal R, Yaron A (2004) Risks for the long run: a potential resolution of asset pricing puzzles. J Finance 59(4):1481–1509

    Article  Google Scholar 

  • Bansal R, Kiku D, Yaron A (2010) Long run risks, the macroeconomy, and asset prices. Am Econ Rev 100:542–546

    Article  Google Scholar 

  • Baranzini A, Chesney M, Morisset J (2003) The impact of possible climate catastrophes on global warming policy. Energy Policy 31(8):691–701

    Article  Google Scholar 

  • Barberis NC (2013) Thirty years of prospect theory in economics: a review and assessment. J Econ Perspect 27(1):173–196

    Article  Google Scholar 

  • Belaia M, Funke M, Glanemann N (2014) Global warming and a potential tipping point in the Atlantic thermohaline circulation: the role of risk aversion. Environ Resour Econ. https://doi.org/10.2139/ssrn.2496359

    Article  Google Scholar 

  • Benartzi S, Thaler RH (1995) Myopic loss aversion and the equity premium puzzle. Q J Econ 110(1):73–92

    Article  Google Scholar 

  • Berger L, Emmerling J, Tavoni M (2016) Managing catastrophic climate risks under model uncertainty aversion. Manag Sci 63(3):749–765

    Article  Google Scholar 

  • Biggs R, Schlüter M, Biggs D, Bohensky EL, BurnSilver S, Cundill G, Dakos V, Daw TM, Evans LS, Kotschy K, Leitch AM, Meek C, Quinlan A, Raudsepp-Hearne C, Robards MD, Schoon ML, Schultz L, West PC (2012) Toward principles for enhancing the resilience of ecosystem services. Annu Rev Environ Resour 37(1):421–448

    Article  Google Scholar 

  • Brekke KA, Johansson-Stenman O (2008) The behavioural economics of climate change. Oxf Rev Econ Policy 24(2):280–297

    Article  Google Scholar 

  • Bretschger L, Vinogradova A (2018) Escaping Damocles' sword: endogenous climate shocks in a growing economy. CER-ETH—Center of Economic Research at ETH Zurich, Working Paper 18/291, May 2018

  • Bretschger L, Vinogradova A (2019) Best policy response to environmental shocks: applying a stochastic framework. J Environ Econ Manag 97:23–41

    Article  Google Scholar 

  • Cai Y, Lontzek TS (2019) The social cost of carbon with economic and climate risks. J Polit Econ 6:2684–2734

    Article  Google Scholar 

  • Cai Y, Judd KL, Lenton TM, Lontzek TS, Narita D (2015) Environmental tipping points significantly affect the cost-benefit assessment of climate policies. Proc Natl Acad Sci 112(15):4606–4611

    Article  Google Scholar 

  • Cai Y, Lenton TM, Lontzek TS (2016) Risk of multiple interacting tipping points should encourage rapid CO2 emission reduction. Nat Clim Change 6(5):520–525

    Article  Google Scholar 

  • Cai Y, Judd K, Lontzek TS (2019) The social cost of carbon with economic and climate risks. J Polit Econ 127(6):2684–2734

    Article  Google Scholar 

  • Carlsson F, Johansson-Stenman O (2012) Behavioral economics and environmental policy. Annu Rev Resour Econ 4(1):75–99

    Article  Google Scholar 

  • Chen X, Favilukis J, Ludvigson SC (2013) An estimation of economic models with recursive preferences. Quant Econ 4:39–83

    Article  Google Scholar 

  • Crost B, Traeger CP (2014) Optimal CO2 mitigation under damage risk valuation. Nat Clim Change 4:631–636

    Article  Google Scholar 

  • Daniel KD, Litterman RB, Wagner D (2018) Applying asset pricing theory to calibrate the price of climate risk. In: Chari VV, Litterman R (eds) Climate change economics: the role of uncertainty and risk. Wiley

    Google Scholar 

  • DellaVigna S (2009) Psychology and economics: evidence from the field. J Econ Lit 47(2):315–372

    Article  Google Scholar 

  • Dhami S, Al-Nowaihi A (2010) Optimal taxation in the presence of tax evasion: expected utility versus prospect theory. J Econ Behav Organ 75(2):313–337

    Article  Google Scholar 

  • Dietz S, Venmans F (2019) The endowment effect, discounting and the environment. J Environ Econ Manag 97:67–91

    Article  Google Scholar 

  • Dietz S, Rising J, Stoerk T, Wagner G (2021) Economic impacts of tipping points in the climate system. Proc Natl Acad Sci 118(34):e2103081118

    Article  Google Scholar 

  • Dominioni G, Heine D (2019) Behavioural economics and public support for carbon pricing: a revenue recycling scheme to address the political economy of carbon taxation. Eur J Risk Regul 10:554–570

    Article  Google Scholar 

  • Douenne T (2020) Disaster risks, disaster strikes, and economic growth: the role of preferences. Rev Econ Dyn 38:251–272

    Article  Google Scholar 

  • Duffie D, Epstein EG (1992) Stochastic differential utility. Econometrica 60:353–394

    Article  Google Scholar 

  • Epstein LG, Zin SE (1989) Substitution, risk aversion, and the temporal behavior of consumption and asset returns: a theoretical framework. Econometrica 57:937–969

    Article  Google Scholar 

  • Fitzpatrick LG, Kelly DL (2017) Probabilistic stabilization targets. J Assoc Environ Resour Econ 4(2):611–657

    Google Scholar 

  • Foellmi R, Rosenblatt-Wisch R, Schenk-Hoppe KR (2011) Consumption paths under prospect utility in an optimal growth model. J Econ Dyn Control 35(2011):273–281

    Article  Google Scholar 

  • Gerlagh R, Liski M (2018) Consistent climate policies. J Eur Econ Assoc 16:1–44

    Article  Google Scholar 

  • Gjerde J, Grepperud S, Kverndokk S (1999) Optimal climate policy under the possibility of a catastrophe. Resour Energy Econ 21(3–4):289–317

    Article  Google Scholar 

  • Golosov M, Hassler J, Krusell P, Tsyvinski A (2014) Optimal taxes on fossil fuel in general equilibrium. Econometrica 82(1):41–88

    Article  Google Scholar 

  • Gsottbauer E, van den Bergh J (2010) Environmental policy theory given bounded rationality and other-regarding preferences. Environ Resour Econ 4:263–304

    Google Scholar 

  • Guivarch C, Pottier A (2017) Climate damage on production or on growth: what impact on the social cost of carbon? Environ Model Assess 23:117–130

    Article  Google Scholar 

  • Hepburn C (2010) Environmental policy, government and the market. Oxf Rev Econ Policy 26(2):117–136

    Article  Google Scholar 

  • Heutel G (2012) How should environmental policy respond to business cycles? Optimal policy under persistent productivity shocks. Rev Econ Dyn 15(2):244–264

    Article  Google Scholar 

  • Heutel G (2019) Prospect theory and energy efficiency. J Environ Econ Manag 96:236–254

    Article  Google Scholar 

  • Hope C (2011) The social cost of CO2 from the Page09 model. Economics Discussion Paper No. 2011-39

  • Howard P (2014) Omitted damages: What’s missing from the social cost of carbon. Institute for Policy Integrity

    Google Scholar 

  • Howard PH, Sterner T (2017) Few and not so far between: a meta-analysis of climate damage estimates. Environ Resour Econ 68:197–225

    Article  Google Scholar 

  • Howarth RB (2006) Optimal taxes under relative consumption effects. Ecol Econ 58:209–219

    Article  Google Scholar 

  • Hwang IC, Reynes F, Tol RSJ (2017) The effect of learning on climate policy under fat-tailed risk. Resour Energy Econ 48:1–18

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007, the Fourth IPCC Assessment Report

  • IPCC (2018) Global warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty

  • Jäntti M, Kanbur R, Nyyssölä M, Pirttila J (2014) Poverty and welfare measurement on the basis of prospect theory. Rev Income Wealth 60(1):182–205

    Article  Google Scholar 

  • Jensen S, Traeger CP (2014) Optimal climate change mitigation under long-term growth uncertainty: stochastic integrated assessment and analytic findings. Eur Econ Rev 69:104–125

    Article  Google Scholar 

  • Kahneman D, Tversky A (1979) Prospect theory: an analysis of decision under risk. Econometrica 47(2):263–292

    Article  Google Scholar 

  • Kahneman D, Knetsch JD, Thaler RH (1990) Experimental tests of the endowment effect and the Coase theorem. J Polit Econ 98(6):1325–1348

    Article  Google Scholar 

  • Karp L (2005) Global warming and hyperbolic discounting. J Public Econ 89(2–3):261–282

    Article  Google Scholar 

  • Keller K, Tan K, Morel FMM, Bradford DF (2000) Preserving the ocean circulation: implications for climate policy. Clim Change 47:17–43

    Article  Google Scholar 

  • Knobloch F, Huijbregts MAJ, Mercure J-F (2019) Modelling the effectiveness of climate policies: how important is loss aversion by consumers? Renew Sustain Energy Rev 116:109419

    Article  Google Scholar 

  • Lemoine D, Rudik I (2017) Managing climate change under uncertainty: recursive integrated assessment at an inflection point. Annu Rev Resour Econ 9(1):117–142

    Article  Google Scholar 

  • Lemoine D, Rudik I (2021) The climate risk premium: how uncertainty affects the social cost of carbon. J Assoc Environ Resour Econ 8(1):27–57

    Google Scholar 

  • Lemoine D, Traeger C (2014) Watch your step: optimal policy in a tipping climate. Am Econ J Econ Policy 6:137–166

    Article  Google Scholar 

  • Lemoine D, Traeger C (2016a) Ambiguous tipping points. J Econ Behav Organ 132(PB):5–18

    Article  Google Scholar 

  • Lemoine D, Traeger CP (2016b) Economics of tipping the climate dominoes. Nat Clim Change 6(5):514–519

    Article  Google Scholar 

  • Lenton T, Held H, Kriegler E, Hall J, Lucht W, Rahmstorf S, Schellnhuber H (2008) Tipping elements in the Earth’s climate system. Proc Natl Acad Sci 105(6):1786–1793

    Article  Google Scholar 

  • Lontzek TS, Cai Y, Judd K, Lenton TM (2015) Stochastic integrated assessment of climate tipping points indicates the need for strict climate policy. Nat Clim Change 5:441–444

    Article  Google Scholar 

  • Müller-Fürstenberger G, Schumacher I (2015) Insurance and climate-driven extreme events. J Econ Dyn Control 54:59–73

    Article  Google Scholar 

  • Nakamura E, Steinsson J, Barro R, Ursua J (2013) Crises and recoveries in an empirical model of consumption disasters. Am Econ J Macroecon 5:35–74

    Article  Google Scholar 

  • Newell RG, Prest BC, Sexton SE (2021) The GDP-temperature relationship: implications for climate change damages. J Environ Econ Manag 108:102445

    Article  Google Scholar 

  • Nordhaus WD (2008) A question of balance. Economic models of climate change. Yale University Press, New Haven

    Google Scholar 

  • Nordhaus WD (2017) Revisiting the social cost of carbon. PNAS 114:1518–1523

    Article  Google Scholar 

  • Nordhaus WD, Boyer J (2003) Warming the world: economic models of global warming. MIT Press

    Google Scholar 

  • Overpeck JT, Cole JE (2006) Abrupt change in Earth’s climate system. Annu Rev Environ Resour 31(1):1–31

    Article  Google Scholar 

  • Pindyck RS (2013) Climate change policy: what do the models tell us? J Econ Lit Am Econ Assoc 51(3):860–872

    Article  Google Scholar 

  • Polasky S, de Zeeuw A, Wagener F (2011) Optimal management with potential regime shifts. J Environ Econ Manag 62:229–240

    Article  Google Scholar 

  • Pollitt MG, Shaoshadze I (2011) The role of behavioural economics in energy and climate policy. Electricity Policy Research Group. University of Cambridge

    Google Scholar 

  • Rabin M (1998) Psychology and economics. J Econ Lit 36(1):11–46

    Google Scholar 

  • Reed WJ (1987) Protecting a forest against fire: optimal protection patterns and harvest policies. Nat Resour Model 2:23–54

    Article  Google Scholar 

  • Rezai A, van der Ploeg F, Withagen C (2012) The optimal carbon tax and economic growth. Additive versus multiplicative damages, CEEES paper CE3S-05/12, Center for Energy and Environmental Economic Studies, St. Petersburg. EUSP, 2012

  • Rezai A, van der Ploeg F (2017) Second-best renewable subsidies to de-carbonize the economy: commitment and the green paradox. Environ Resource Econ 66:409–434

    Article  Google Scholar 

  • Rosenblatt-Wisch R (2008) Loss aversion in aggregate macroeconomic time series. Eur Econ Rev 52(7):1140–1159

    Article  Google Scholar 

  • Safarzynska K (2018) Integrating behavioural economics into climate-economy models. Some policy lessons. Clim Policy 18:485–498

    Article  Google Scholar 

  • Santoro E, Petrella I, Pfajfar D, Gaffeo E (2014) Loss aversion and the asymmetric transmission of monetary policy. J Monet Econ 68:19–36

    Article  Google Scholar 

  • Schubert K, Smulders S (2019) How important are uncertainty and dynamics for environmental and climate policy? Some analytics. J Environ Econ Manag 97:1–22

    Article  Google Scholar 

  • Shogren JF, Taylor LO (2008) On Behavioral-environmental economics. Rev Environ Econ Policy 2:26–44

    Article  Google Scholar 

  • Stern DI (2013) Uncertainty measures for economics journal impact factors. J Econ Lit 51(1):173–189

    Article  Google Scholar 

  • Taconet N, Guivarch C, Pottier A (2021) Social cost of carbon under stochastic tipping points. Environ Resour Econ 78:709–737

    Article  Google Scholar 

  • Thaler RH, Tversky A, Kahneman D, Schwartz A (1997) The effect of myopia and loss aversion on risk taking: an experimental test. Q J Econ 112(2):647–661

    Article  Google Scholar 

  • Traeger CP (2014) Why uncertainty matters: discounting under intertemporal risk aversion and ambiguity. Econ Theor 56:627–664

    Article  Google Scholar 

  • Tsur Y, Zemel A (2017) Coping with multiple catastrophic threats. Environ Resour Econ 68:175–196

    Article  Google Scholar 

  • van den Bergh JCJM, Botzen WJW (2015) Monetary valuation of the social cost of CO2 emissions: a critical survey. Ecol Econ 114(1):33–46

    Article  Google Scholar 

  • van den Bijgaart I, Gerlagh R, Liski M (2016) A simple formula for the social cost of carbon. J Environ Econ Manag 77(1):75–94

    Article  Google Scholar 

  • van den Bremer T, van der Ploeg F (2018) Pricing carbon under economic and climactic risks: leading-order results from asymptotic analysis. CEPR Discussion Papers 12642, C.E.P.R. Discussion Papers

  • van der Ploeg F (2014) Abrupt positive feedback and the social cost of carbon. Eur Econ Rev 67:28–41

    Article  Google Scholar 

  • van der Ploeg F, de Zeeuw A (2016) Non-cooperative and cooperative responses to climate catastrophes in the global economy: a north-south perspective. Environ Resour Econ 65:519–540

    Article  Google Scholar 

  • van der Ploeg F, de Zeeuw A (2018) Climate tipping and economic growth: precautionary capital and the price of carbon. J Eur Econ Assoc 16(5):1577–1617

    Article  Google Scholar 

  • van der Ploeg F, de Zeeuw A (2019) Pricing carbon and adjusting capital to fend off climate catastrophes. Environ Resour Econ 72:29–50

    Article  Google Scholar 

  • Vissing-Jørgensen A, Attanasio OP (2003) Stock-market participation, intertemporal substitution, and risk aversion. Am Econ Rev 93(2):383–391

    Article  Google Scholar 

  • Weil P (1990) Nonexpected utility in macroeconomics. Q J Econ 105(1):29–42

    Article  Google Scholar 

Download references

Acknowledgements

Research was supported by the National Science Centre of Poland, Grant 2016/21/B/HS4/00647.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominika Czyz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Baseline Model After the Climate Regime Shift

After the climate regime shift the social planner’s optimization problem is described by the Hamilton–Jacobi–Bellman (HJB) equation in the value function \({V}^{A}(K,d)\)

$${\rho V}^{A}(K,P,d)=\underset{C}{\mathrm{max}}U\left({C}^{A}\right)+{V}_{K}^{A}(K,d)({Y}^{A}\left({K}^{A},d\right)-{C}^{A}).$$
(35)

Differentiating the value function with respect to consumption \({C}^{A}\) and capital \({K}^{A}\) gives the optimality conditions for consumption and capital after the climate regime shift

$$U{^{\prime}}\left({C}^{A}\right)={V}_{K}^{A}(K,d),$$
(36)
$${Y}_{t}^{A}\left({K}_{t}^{A},d\right)-{C}^{A}=-\frac{{V}_{K}^{A}(K,d)}{{V}_{KK}^{A}(K,d)}({Y}_{t}^{A}\left({K}_{t}^{A},d\right)-\theta ).$$
(37)

Combining the optimality condition (36) with optimality condition (37) and using that \(\dot{{K}^{A}}=\dot{{C}^{A}}\), yields a differential equation for consumption after the regime shift \({C}^{A}\) as a function of capital \({K}^{A}\)

$$\dot{{C}^{A}}=-\frac{U{^{\prime}}\left({C}^{A}\right)}{U{^{\prime}}{^{\prime}}\left({C}^{A}\right)}({Y}_{K}^{A}\left({K}^{A},d\right)-\theta ).$$
(12)

Using the standard CRRA utility function (7) and substituting for \(U{^{\prime}}\left({C}^{A}\right)\) and \(U{^{\prime}}{^{\prime}}\left({C}^{A}\right)\) the Keynes-Ramsey rule can be expressed as:

$$\dot{{C}^{A}}=\frac{{C}^{A}}{\sigma }({Y}_{K}^{A}\left({K}^{A},d\right)-\theta ).$$
(38)

Using the Cob-Douglas production function (30) the net output function can be expressed as:

$${Y}_{t}^{A}\left({K}_{t}^{A},d\right)=\underset{C,F}{\mathrm{max}}(1-d)A{{K}_{t}^{A}}^{\alpha }{({{F}_{t}^{A}}^{\kappa }{{R}_{t}^{A}}^{1-\kappa })}^{\beta }{L}^{1-\alpha -\beta }-(g{+{\tau }_{A})F}_{t}^{A} -b{R}_{t}^{A}- \delta {K}_{t}^{A}.$$
(39)

Differentiating the net output function with respect to fossil fuel use \({F}_{t}^{A}\) and rearranging gives the optimality condition for fossil fuel use after the climate regime shift:

$${F}^{A}={(g+{\tau }_{A})}^{\frac{1}{\kappa \beta -1}}{\left((1-d)A{{K}^{A}}^{\alpha }{{R}^{A}}^{(1-\kappa )\beta }{L}^{1-\alpha -\beta }\kappa \beta \right)}^{\frac{1}{1-\kappa \beta }}.$$
(40)

Substituting for \({F}^{A}\) from Eq. (40) into Eq. (39) and rearranging gives the net output function:

$${Y}^{A}\left(.\right)=\left(1-\beta \right){\left(\left(1-d\right)Z\left({P}^{A}\right)A{{K}^{A}}^{\alpha }{L}^{1-\alpha -\beta }{\beta }^{\beta }{\left(\frac{\kappa }{g+{\tau }_{A}}\right)}^{\beta \kappa }{\left(\frac{1-\kappa }{b}\right)}^{\beta \left(1-\kappa \right)}\right)}^{\frac{1}{1-\beta }}-\delta {K}^{A}.$$
(41)

Using that in the steady state \(\dot{{C}^{A}}=0\) from Eq. (38) we have that

$${Y}_{K}^{A}\left({K}^{A},d\right)-\theta =0.$$
(42)

Next, using that \({C}^{A}=Y({K}^{A},d)\) (re-arranged from Eq. 12), the formula for net output function from Eqs. (37) and (42) we derive the steady state level of capital and consumption after the climate regime shift as:

$$\begin{aligned} \overline{{K^{A} }} & = \left( {\left( {\left( {1 - d} \right)Z\left( {\overline{{P^{A} }} } \right)AL^{1 - \alpha - \beta } \beta^{\beta } \left( {\frac{\kappa }{{g + \overline{{\tau_{A} }} }}} \right)^{\beta \kappa } \left( {\frac{1 - \kappa }{b}} \right)^{{\beta \left( {1 - \kappa } \right)}} } \right)^{{\frac{1}{1 - \beta }}} \left( {\frac{\alpha }{\theta + \delta }} \right)} \right)^{{\frac{1 - \beta }{{1 - \alpha - \beta }}}} , \\ \overline{{C^{A} }} & = \left( {1 - \beta } \right)\left( {\left( {1 - d} \right)Z\left( {\overline{{P^{A} }} } \right)AL^{1 - \alpha - \beta } \beta^{\beta } \left( {\frac{\kappa }{{g + \overline{{\tau_{A} }} }}} \right)^{\beta \kappa } \left( {\frac{1 - \kappa }{b}} \right)^{{\beta \left( {1 - \kappa } \right)}} } \right)^{{\frac{1}{1 - \beta }}} \overline{{K^{A} }}^{{\frac{\alpha }{1 - \beta }}} - \delta \overline{{K^{A} }} . \\ \end{aligned}$$
(43)

Appendix 2: Hamilton–Jacobi–Bellman Equation with Endogenous Hazard Rate

Starting at time t we can approximate the probability of a regime shift in a small time period \(\Delta t\) by \(H({P}_{t})\Delta t\). The value function \(W(K,t)\) is the maximal expected value of the objective function at time \(t\) for capital stock \(K\) and can therefore be written as:

$$W(K,t)=\underset{C}{\mathrm{ max}}E\left({\int }_{0}^{t+\Delta t}U\left(C\right){e}^{-\theta t}dt+ (1-H(P)\Delta t )\mathrm{W}(\mathrm{K}+\Delta \mathrm{K},\mathrm{ t}+\Delta \mathrm{t})+H(P)\Delta t {V}^{A}(\mathrm{K}+\Delta \mathrm{K},d) {e}^{-\theta (t+\Delta t)}\right).$$
(44)

After approximating the integral \({\int }_{0}^{t+\Delta t}U\left({C}_{t}\right){e}^{-\theta t}dt\) by \(U\left({C}_{t}\right){e}^{-\theta t}\Delta t\) and moving the left-hand side of the Eq. (44) to the right-hand side we get

$$0=\underset{C}{\mathrm{ max}}E\left(U\left(C\right){e}^{-\theta t}\Delta t+ (1-H(P)\Delta t )\mathrm{W}(\mathrm{K}+\Delta \mathrm{K},\mathrm{ t}+\Delta \mathrm{t})+H(P)\Delta t {V}^{A}(\mathrm{K}+\Delta \mathrm{K},d) {e}^{-\theta (t+\Delta t)}-W(K,t)\right),$$
(45)

which after simplifying and dividing by \(\Delta t\) gives

$$0=\underset{C}{\mathrm{ max}}E\left(U\left(C\right){e}^{-\theta t}-H(P)\mathrm{ W}(\mathrm{K}+\Delta \mathrm{K},\mathrm{ t}+\Delta \mathrm{t})+H(P){V}^{A}(\mathrm{K}+\Delta \mathrm{K},d) {e}^{-\theta (t+\Delta t)} +\frac{\mathrm{W}(\mathrm{K}+\Delta \mathrm{K},\mathrm{ t}+\Delta \mathrm{t})-W(K,t)}{\Delta \mathrm{t}}\right).$$
(46)

Taking the limit of Eq. (45) for \(\Delta \mathrm{t}\to 0\) and using that \(\dot{{C}_{t}}={Y}_{t}\left({K}_{t}\right)-{C}_{t}-\delta {K}_{t}\) yields

$$0=\underset{C}{\mathrm{ max}}E\left(U\left(C\right){e}^{-\theta t} -H(P)\mathrm{W}(\mathrm{K},\mathrm{ t})+H(P) {V}^{A}(\mathrm{K},d) {e}^{-\theta t} +{W}_{K}(K,t)(Y\left(K\right)-C-\delta K\right)+{W}_{t}(K,t).$$
(47)

By setting \({V}^{B}(K)=W(K,t){e}^{\theta t}\) we have

$$0=\underset{C}{\mathrm{ max}}E\left(U\left(C\right){e}^{-\theta t} -H(P){V}^{B}(K){e}^{-\theta t}+H(P) {V}^{A}(\mathrm{K},d) {e}^{-\theta t} +{V}_{K}^{B}(K){e}^{-\theta t}(Y\left(K\right)-C-\delta K\right)+{V}^{B}(K){e}^{-\theta t}(-\theta ),$$
(48)

which can be simplified and rearranged into

$${\theta V}^{B}(K)=\underset{C}{\mathrm{ max}}E\left(U\left(C\right) -H(P)({V}^{B}(K)-{V}^{A}(\mathrm{K},d)) + {V}_{K}^{B}(K)(Y\left(K\right)-C-\delta K\right).$$
(49)

Therefore, assuming the Cobb–Douglas production function of the form \(Y(K,L,F,R)\) and using the formula derived in Eq. (49) the deterministic Hamilton–Jacobi–Bellman equation in the value function \({V}^{B}(K,P)\) becomes

$${\theta V}^{B}(K,P)=\underset{C}{\mathrm{max}}U\left({C}^{B}\right)-H({P}^{B})({V}^{B}(K,P)-{V}^{A}(K,P, d))+{V}_{K}^{B}(K,P)(A{Y}^{B}\left({K}^{B},{L}^{B},{F}^{B},{R}^{B}\right)-(g{+\tau )F}_{t}^{B}- {bR}^{B}-{C}^{B}-\delta {K}^{B})+{V}_{P}^{B}(K,P)(\psi {F}^{B}-\gamma {P}^{B}).$$
(50)

Appendix 3: Baseline Model Before the Climate Regime Shift

Before the climate regime shift the social planner’s optimization problem is described by the Hamilton–Jacobi–Bellman equation in the value function \({V}^{B}(K,P)\)

$${\theta V}^{B}(K,P)=\underset{C}{\mathrm{max}}U\left({C}^{B}\right)-H({P}^{B})({V}^{B}(K,P)-{V}^{A}(K,d))+{V}_{K}^{B}(K,P)({Y}^{B}\left({K}^{B},{F}^{B}\right)-(g{+\tau )F}_{t}^{B}-{C}^{B}-\delta {K}^{B})+{V}_{P}^{B}(K,P)(\psi {F}^{B}-\gamma {P}^{B}).$$
(51)

Differentiating the value function with respect to consumption \({C}^{B}\) and capital \({K}^{B}\) gives the optimality conditions for consumption and capital before the climate regime shift

$$U{^{\prime}}\left({C}^{B}\right)={V}_{K}^{B}(K,P),$$
(52)
$${Y}_{t}^{A}\left({K}_{t}^{B},\tau \right)-{C}^{B}=-\frac{{V}_{K}^{B}(K,P)}{{V}_{KK}^{B}(K,P)}\left({Y}_{t}^{B}\left({K}_{t}^{B},\tau \right)-\theta +H({P}^{B})\left(\frac{{V}_{K}^{A}(K,d)}{{V}_{K}^{B}(K,P)}-1\right)\right).$$
(53)

Combining the optimality condition (52) with optimality condition (53) and using that \(\dot{{K}^{B}}=\dot{{C}^{B}}\), yields a differential equation for consumption before the regime shift \({C}^{B}\) as a function of capital \({K}^{B}\) and carbon emissions via the hazard function \(H(P)\)

$$\dot{{C}^{B}}=-\frac{U{^{\prime}}\left({C}^{B}\right)}{U{^{\prime}}{^{\prime}}\left({C}^{B}\right)}\left({Y}_{t}^{B}\left({K}_{t}^{B},\tau \right)-\theta +H({P}^{B})\left(\frac{U{^{\prime}}\left({C}^{A}\right)}{U{^{\prime}}\left({C}^{B}\right)}-1\right)\right),$$
(54)

which corresponds to the following Keynes-Ramsey rule

$$\dot{{C}^{B}}=-\frac{U{^{\prime}}\left({C}^{B}\right)}{U{^{\prime}}{^{\prime}}\left({C}^{B}\right)}({Y}_{K}^{B}\left({K}^{B},\tau \right)-\theta +\vartheta ),$$
(18)

where \(\vartheta\) is the precautionary return on capital accumulation defined as

$$\vartheta =H({P}^{B}) \left(\frac{U{^{\prime}}\left({C}^{A}\right)}{U{^{\prime}}\left({C}^{B}\right)}-1\right).$$
(55)

Using the standard CRRA utility function (7) we have

$$\dot{{C}^{B}}=\frac{{C}^{B}}{\sigma }({Y}_{K}^{B}\left({K}^{B},\tau \right)-\theta +\vartheta ),$$
(56)

and the precautionary return on capital \(\vartheta\) becomes

$$\theta =H(P) \left({\left(\frac{{C}^{B}}{{C}^{A}}\right)}^{\sigma }-1\right).$$
(21)

Using the Cob-Douglas production function (30) the net output function can be expressed as:

$${Y}_{t}^{B}\left({K}_{t}^{B},\tau \right)=\underset{C,F}{\mathrm{max}}Z({P}_{t}^{B})A{{K}_{t}^{A}}^{\alpha }{({{F}_{t}^{A}}^{\kappa }{{R}_{t}^{A}}^{1-\kappa })}^{\beta }{L}^{1-\alpha -\beta }-(g{+\tau )F}_{t}^{B} -b{R}_{t}^{B}- \delta {K}_{t}^{B}.$$
(15)

Differentiating the net output function with respect to fossil fuel use \({F}_{t}^{B}\) and rearranging gives the optimality condition for fossil fuel use before the climate regime shift

$${F}^{B}={(g+\tau )}^{\frac{1}{\kappa \beta -1}}{\left((1-d)A{{K}^{B}}^{\alpha }{{R}^{B}}^{(1-\kappa )\beta }{L}^{1-\alpha -\beta }\kappa \beta \right)}^{\frac{1}{1-\kappa \beta }}.$$
(57)

Substituting for \({F}^{B}\) from Eq. (53) into Eq. (50) and rearranging gives the net output function

$${Y}^{B}\left(.\right)=\left(1-\beta \right){\left(Z\left({P}^{B}\right)A{{K}^{B}}^{\alpha }{L}^{1-\alpha -\beta }{\beta }^{\beta }{\left(\frac{\kappa }{g+\tau }\right)}^{\beta \kappa }{\left(\frac{1-\kappa }{b}\right)}^{\beta \left(1-\kappa \right)}\right)}^{\frac{1}{1-\beta }}-\delta {K}^{B}.$$
(58)

Using that in the steady state \(\dot{{C}^{B}}=0\) from Eq. (56) we have that

$${Y}_{K}^{B}\left({K}^{B},\tau \right)-\theta +\vartheta =0.$$
(59)

Next, using that \({C}^{B}=Y({K}^{B},\tau )+{\tau F}^{B}\) (re-arranged from Eq. 14a), the formula for net output function from Eqs. (58) and (59) we derive the steady state level of capital and consumption before the climate regime shift. Finally, using Eq. (56) we derive the precautionary return on capital in the steady state

$$\begin{aligned} \overline{{K^{B} }} & = \left( {\left( {Z\left( {\overline{{P^{B} }} } \right)AL^{1 - \alpha - \beta } \beta^{\beta } \left( {\frac{\kappa }{{g + \overline{\tau }}}} \right)^{\beta \kappa } \left( {\frac{1 - \kappa }{b}} \right)^{{\beta \left( {1 - \kappa } \right)}} } \right)^{{\frac{1}{1 - \beta }}} \left( {\frac{\alpha }{{\theta + \delta - \overline{\vartheta }}}} \right)} \right)^{{\frac{1 - \beta }{{1 - \alpha - \beta }}}} , \\ \overline{{C^{B} }} & = \left( {1 - \beta } \right)\left( {Z\left( {\overline{{P^{B} }} } \right)AL^{1 - \alpha - \beta } \beta^{\beta } \left( {\frac{\kappa }{{g + \overline{\tau }}}} \right)^{\beta \kappa } \left( {\frac{1 - \kappa }{b}} \right)^{{\beta \left( {1 - \kappa } \right)}} } \right)^{{\frac{1}{1 - \beta }}} \overline{{K^{B} }}^{{\frac{\alpha }{1 - \beta }}} - \delta \overline{{K^{B} }} , \\ \overline{\vartheta } & = H\left( {\overline{{P^{B} }} } \right) \left( {\left( {\frac{{\overline{{C^{B} }} }}{{\overline{{C^{A} }} }}} \right)^{\sigma } - 1} \right). \\ \end{aligned}$$
(60)

Appendix 4: Carbon Tax with Non-catastrophic and Catastrophic Damages in the Baseline Model

First, we differentiate the Hamilton–Jacobi–Bellman equation in the value function \({V}^{A}(K,P,d)\)

$${\theta V}^{A}(K,P,d)=\underset{C,F}{\mathrm{max}}\left(U\left({C}^{A}\right)+{V}_{K}^{A}(K,P,d)({(1-d)Z({P}^{A})AY}^{A}\left({K}^{A},{F}^{A}\right)-{C}^{A}-(g+{\tau }_{A}){F}^{A}-\delta {K}^{A})+{V}_{P}^{A}(K,P)(\psi {F}^{A}-\gamma {P}^{A})\right)$$
(61)

with respect to fossil fuel use \({F}^{A}\), which gives:

$$0={V}_{K}^{B}(K,P)((1-d)Z({P}^{A}){Y}_{F}^{A}\left({K}^{A},{F}^{A}\right)-(g+{\tau }_{A})+{V}_{P}^{B}(K,P)\psi ,$$
(62)

and derive the optimality condition for fossil fuel use after the climate regime shift \({F}^{A}\) from the net output function \({Y}_{t}^{A}\left({K}_{t}^{A},{P}_{t}^{A},d\right)\) (39):

$$(1-d)Z({P}^{A})A{Y}_{F}^{A}\left({K}^{A},{F}^{A}\right) =(g+{\tau }_{A}).$$
(63)

By combining Eqs. (62) and (63) we derive the formula for the carbon tax after the catastrophe:

$${\tau }_{A}=-\psi \frac{{V}_{P}^{A}(K,P,d)}{{V}_{K}^{A}(K,P)}.$$
(10)

Then, we differentiate the modified Hamilton–Jacobi–Bellman equation in the value function \({V}^{B}(K,P)\)

$${\rho V}^{B}\left(K,P\right)=\underset{C}{\mathrm{max}}U\left({C}^{B}\right)-H({P}^{B})({V}^{B}(K,P)-{V}^{A}(K,P,d))+{V}_{K}^{B}(K,P)(Z({P}^{B})A{Y}^{B}\left({K}^{B},{F}^{B}\right)-{C}^{B}-(g{+\tau )F}_{t}^{B}-\delta {K}^{B})+{V}_{P}^{B}(K,P)(\psi {F}^{B}-\gamma {P}^{B})$$
(64)

with respect to carbon emissions \({P}^{B}\) and capital \({K}^{B}\), which yields:

$${\dot{V}}_{P}^{B}(K,P)=(\theta +H({P}^{B})+\gamma )({V}_{P}^{B}(K,P)+H{^{\prime}}({P}^{B})({V}_{P}^{B}(K,P)-{V}^{A}(K,P,d))-H({P}^{B}){V}_{P}^{A}(K,P,d)-{V}_{K}^{B}(K,P)(Z{^{\prime}}({P}^{B}){Y}^{B}\left({K}^{B},\tau \right)),$$
(65)
$${\dot{V}}_{K}^{B}(K,P)=\left({Y}^{B}\left({K}^{B},\tau \right)-\theta +H({P}^{B})\right){V}_{K}^{B}(K,P)+H({P}^{B}){V}^{A}(K,P,d).$$
(66)

Using Eqs. (65) and (66) and the fact that

$$\frac{\dot{\tau }}{\tau }=\frac{{\dot{V}}_{P}^{B}(K,P)}{{V}_{P}^{B}(K,P)}-\frac{{\dot{V}}_{K}^{B}(K,P)}{{V}_{K}^{B}(K,P)}$$
(67)

we can derive the differential equation for the carbon tax:

$$\dot{\tau }=({Y}_{K}^{B}(K,P)+\gamma +H({P}^{B})+\theta )\tau -\psi H{^{\prime}}({P}^{B})\frac{{V}^{B}(K,P)-{V}^{A}(K,P,d)}{{V}_{K}^{B}(K,P)}-\psi \frac{H({P}^{B}){V}_{P}^{A}(K,P,d){+V}_{K}^{B}(K,P)Z{^{\prime}}({P}^{B}){Y}^{B}({K}^{B},\tau )}{{V}_{K}^{B}(K,P)}.$$
(68)

Using the optimality condition \(U{^{\prime}}\left({C}^{B}\right)={V}_{K}^{B}(K,P)\) yields a differential equation for the carbon tax as a function of \({K}^{B}\) and \({C}^{B}\):

$$\dot{\tau }=({Y}_{K}^{B}(K,P)+\gamma +H({P}^{B})+\vartheta )\tau -\psi H{^{\prime}}({P}^{B})\frac{{V}^{B}(K,P)-{V}^{A}(K,P,d)}{U{^{\prime}}({C}^{B})}-\psi \frac{H({P}^{B}){V}_{P}^{A}(K,P,d){+V}_{K}^{B}(K,P)Z{^{\prime}}({P}^{B}){Y}^{B}({K}^{B},\tau )}{U{^{\prime}}({C}^{B})}.$$
(69)

Since in the steady state \(\dot{\tau }=0\) using Eq. (69) we can derive the steady state carbon tax before the regime shift as:

$$\overline{\tau }=\psi H{^{\prime}}(\overline{{P }^{B}})\frac{{V}^{B}(K,P)-{V}^{A}(K,P,d)}{U{^{\prime}}(\overline{{C }^{B}}) ({Y}_{K}^{B}(K,P)+H(\overline{{P }^{B}})+\gamma +\theta )}-\frac{\psi H(\overline{{P }^{B}}){V}_{P}^{A}(K,P,d)}{U{^{\prime}}(\overline{{C }^{B}}) ({Y}_{K}^{B}(K,P)+H(\overline{{P }^{B}})+\gamma +\theta )}-\psi \frac{Z{^{\prime}}(\overline{{P }^{B}}){Y}^{B}(\overline{{K }^{B}},\overline{\tau })}{ {Y}_{K}^{B}(K,P)+H(\overline{{P }^{B}})+\gamma +\theta },$$
(24)

which using that \({Y}_{K}^{B}\left({K}^{B},\tau \right)+\vartheta =\theta\) (re-arranged from Eq. 63) can be written as:

$$\overline{\tau }=\psi H{^{\prime}}(\overline{{P }^{B}})\frac{{V}^{B}(K,P)-{V}^{A}(K,P,d)}{U{^{\prime}}(\overline{{C }^{B}}) (H(\overline{{P }^{B}})+\gamma +\theta )}-\frac{\psi H(\overline{{P }^{B}}){V}_{P}^{A}(K,P,d)}{U{^{\prime}}(\overline{{C }^{B}}) (H(\overline{{P }^{B}})+\gamma +\theta )}-\psi \frac{Z{^{\prime}}(\overline{{P }^{B}}){Y}^{B}(\overline{{K }^{B}},\overline{\tau })}{ H(\overline{{P }^{B}})+\gamma +\theta },$$
(70)

and using (10) translates into:

$$\overline{\tau }=\psi H{^{\prime}}(\overline{{P }^{B}})\frac{{V}^{B}(K,P)-{V}^{A}(K,P,d)}{U{^{\prime}}(\overline{{C }^{B}}) (H(\overline{{P }^{B}})+\gamma +\theta )}+\frac{H(\overline{{P }^{B}}){\tau }_{A}{V}_{K}^{A}(K,P,d)}{U{^{\prime}}(\overline{{C }^{B}}) (H(\overline{{P }^{B}})+\gamma +\theta )}-\psi \frac{Z{^{\prime}}(\overline{{P }^{B}}){Y}^{B}(\overline{{K }^{B}},\overline{\tau })}{ H(\overline{{P }^{B}})+\gamma +\theta }.$$
(25)

Substituting for \({V}^{B}(K,P)\) from (64), \({V}^{A}(K,P,d)\) and \({V}_{K}^{A}(K,P,d)\) from (35) and using the standard CRRA utility function (7) we derive the formula for the carbon tax in the steady state in the baseline model with catastrophic damages as:

$$\overline{\tau }=\psi H{^{\prime}}(\overline{{P }^{B}})\frac{{\overline{{C }^{B}}}^{\sigma }{\stackrel{-}{({C}^{B}}}^{1-\sigma }-{\overline{{C }^{A}}}^{1-\sigma })}{(1-\sigma )(H(\overline{{P }^{B}})+\gamma +\theta )(\theta +H(\overline{{P }^{B}}))}+\frac{H(\overline{{P }^{B}}){\tau }_{A}({\overline{{C }^{A}}}^{1-\sigma }-1){\overline{{C }^{B}}}^{\sigma }}{(1-\sigma )\theta (H(\overline{{P }^{B}})+\gamma +\theta )}-\psi \frac{Z{^{\prime}}(\overline{{P }^{B}}){Y}^{B}(\overline{{K }^{B}},\overline{\tau })}{ H(\overline{{P }^{B}})+\gamma +\theta }.$$
(27)

Appendix 5: Carbon Tax with Non-catastrophic and Catastrophic Damages in the Model with Loss Aversion

After the climate regime shift the social planner’s optimization problem in the model with loss aversion is described by the Hamilton–Jacobi–Bellman (HJB) equation in the value function \({V}^{A}(K,d)\) from Eq. (9), and differentiating the value function with respect to consumption \({C}^{A}\) gives a modified optimality conditions for consumption:

$${U}_{C}\left({C}^{A},{X}^{A}\right)={V}_{K}^{A}(K,d)+\rho {V}_{X}^{A}(K,P),$$
(71)

while the optimality condition for capital from Eq. (37) still holds.

Combining the optimality condition (69) with optimality condition (37), using a condition that \(\dot{{U}_{C}\left(C,X\right)}=\dot{C}{U}_{CC}\left(C,X\right)+\dot{X}{U}_{CX}\left(C,X\right)\) and using that \(\dot{{K}^{A}}=\dot{{C}^{A}}\), yields a differential equation for consumption after the regime shift \({C}^{A}\) as a function of capital \({K}^{A}\):

$$\dot{{C}^{A}}=-\frac{\theta \left(\left({C}^{A}-{X}^{A}\right){U}_{CX}\left({C}^{A},{X}^{A}\right)-\left(\rho +\theta \right){V}_{X}^{A}\left(K,P\right)+ {U}_{X}\left({C}^{A},{X}^{A}\right)\right)}{{U}_{CC}\left({C}^{A},{X}^{A}\right)}-\frac{{(U}_{C}\left({C}^{A},{X}^{A}\right)+{V}_{X}^{A}(K,P)\rho )\left({Y}_{K}^{A}\left({K}^{A},d\right)-\theta \right)}{{U}_{CC}\left({C}^{A},{X}^{A}\right)}.$$
(11)

Using utility function from Eq. (4), the formula describing accumulation of reference stock \(\dot{X}\) from Eq. (8) and substituting for \({U}_{CX}\left({C}^{A},{X}^{A}\right)\) and \({U}_{CC}\left({C}^{A},{X}^{A}\right)\) the Keynes-Ramsey rule after the climate shock in the model with loss aversion can be expressed as:

$$\dot{{C}^{A}}=((\xi {{C}^{A}}^{-\sigma }-\nu (-1+\xi )\chi {(m-{C}^{A}+{X}^{A})}^{-1+\chi }+\rho {V}_{X}^{A}(K,P))(-{Y}_{K}^{A}\left({K}^{A},d\right)+\theta +(\nu (-1+\xi )\rho (-1+\chi )\chi ({C}^{A}-{X}^{A}){(m-{C}^{A}+{X}^{A})}^{-2+\chi })/(\xi {{C}^{A}}^{-\sigma }-\nu (-1+\xi )\chi {(m-{C}^{A}+{X}^{A})}^{-1+\chi }+\rho {V}_{X}^{A}(K,P))+\frac{\nu (-1+\xi )\rho \chi {(m-{C}^{A}+{X}^{A})}^{-1+\chi }}{\xi {{C}^{A}}^{-\sigma }-\nu (-1+\xi )\chi {(m-{C}^{A}+{X}^{A})}^{-1+\chi }+\rho {V}_{X}^{A}(K,P)}-\frac{\rho (\theta +\rho ){V}_{X}^{A}(K,P)}{\xi {{C}^{A}}^{-\sigma }-\nu (-1+\xi )\chi {(m-{C}^{A}+{X}^{A})}^{-1+\chi }+\rho {V}_{X}^{A}(K,P)}))/(-\xi \sigma {{C}^{A}}^{-1-\sigma }+\nu (-1+\xi )(-1+\chi )\chi {(m-{C}^{A}+{X}^{A})}^{-2+\chi }).$$
(72)

Before the climate regime shift the social planner’s optimization problem in the model with loss aversion is described by the Hamilton–Jacobi–Bellman equation in the value function \({V}^{B}(K,P)\) from Eq. (15), and differentiating the value function with respect to consumption \({C}^{B}\) gives a modified optimality conditions for consumption:

$${U}_{C}\left({C}^{B},{X}^{B}\right)={V}_{K}^{B}(K,P)+\rho {V}_{X}^{B}(K,P),$$
(73)

while the optimality condition for capital from Eq. (53) still holds.

Combining the optimality condition (71) with optimality condition (53), using a condition that \(\dot{{U}_{C}\left(C,X\right)}=\dot{C}{U}_{CC}\left(C,X\right)+\dot{X}{U}_{CX}\left(C,X\right)\) and using that \(\dot{{K}^{B}}=\dot{{C}^{B}}\), yields a differential equation for consumption before the regime shift \({C}^{B}\) as a function of capital \({K}^{B}\) and carbon emissions via the hazard function \(H(P)\):

$$\dot{{C}^{B}}=-\frac{\theta (\left({C}^{B}-{X}^{B}\right){U}_{CX}\left({C}^{B},{X}^{B}\right)-\left(\rho +\theta \right){V}_{X}^{B}(K,P)+ {U}_{X}\left({C}^{A},{X}^{A}\right)) }{{U}_{CC}\left({C}^{B},{X}^{B}\right)}-\frac{{(U}_{C}\left({C}^{B},{X}^{B}\right)+{V}_{X}^{B}(K,P)\rho )\left({Y}_{K}^{B}\left({K}^{B},\tau \right)-\theta +\vartheta \right)}{{U}_{CC}\left({C}^{B},{X}^{B}\right)}.$$
(74)

Using utility function from Eq. (4), the formula describing accumulation of reference stock \(\dot{X}\) from Eq. (8) and substituting for \({U}_{CX}\left({C}^{A},{X}^{A}\right)\) and \({U}_{CC}\left({C}^{A},{X}^{A}\right)\) the Keynes-Ramsey rule before the climate shock in the model with loss aversion can be expressed as:

$$\dot{{C}^{B}}=-(((\xi {{C}^{B}}^{-\sigma }-(-1+\xi )\chi {(m+{C}^{B}-{X}^{B})}^{-1+\chi }+\rho {V}_{X}^{B}(K,P))(-{Y}_{K}^{B}\left({K}^{B},\tau \right)+\theta -\vartheta -\frac{(-1+\xi )\rho (-1+\chi )\chi ({C}^{B}-{X}^{B}){(m+{C}^{B}-{X}^{B})}^{-2+\chi }}{\xi {{C}^{B}}^{-\sigma }-(-1+\xi )\chi {(m+{C}^{B}-{X}^{B})}^{-1+\chi }+\rho {V}_{X}^{A}(K,P)}+\frac{(-1+\xi )\rho \chi {(m+{C}^{B}-{X}^{B})}^{-1+\chi }}{\xi {{C}^{B}}^{-\sigma }-(-1+\xi )\chi {(m+{C}^{B}-{X}^{B})}^{-1+\chi }+\rho {V}_{X}^{A}(K,P)}-\frac{\rho (\theta -\vartheta +\rho ){V}_{X}^{A}(K,P)}{\xi {{C}^{B}}^{-\sigma }-(-1+\xi )\chi {(m+{C}^{B}-{X}^{B})}^{-1+\chi }+\rho {V}_{X}^{A}(K,P)}))/(\xi \sigma {{C}^{B}}^{-1-\sigma }+(-1+\xi )(-1+\chi )\chi {(m+{C}^{B}-{X}^{B})}^{-2+\chi })),$$
(75)

where

$$\vartheta =H({P}^{B}) \left(\frac{\xi {{C}^{A}}^{-\sigma }+\lambda (1-\xi )\chi {(m-{C}^{A}+{X}^{A})}^{-1+\chi }}{\xi {{C}^{B}}^{-\sigma }+(1-\xi )\chi {(m+{C}^{B}-{X}^{B})}^{-1+\chi }}-1\right).$$
(20)

Derivation of the carbon tax with non-catastrophic and catastrophic damages in the model with loss aversion follows Eqs. (61)–(68), however using the optimality condition \({U}_{C}\left({C}^{B},{X}^{B}\right)={V}_{K}^{B}(K,P)+\rho {V}_{X}^{B}(K,P)\) from Eq. (69) yields a modified differential equation for the carbon tax as a function of \({K}^{B}\) and \({C}^{B}\):

$$\dot{\tau }=({Y}_{K}^{B}(K,P)+\gamma +H({P}^{B})+\theta )\tau -\psi H{^{\prime}}({P}^{B})\frac{{V}^{B}(K,P)-{V}^{A}(K,P,d)}{{U}_{C}\left({C}^{B},{X}^{B}\right)}-\psi \frac{H({P}^{B}){V}_{P}^{A}(K,P,d)+({V}_{K}^{B}(K,P)+\rho {V}_{X}^{B}(K,P) )Z{^{\prime}}({P}^{B}){Y}^{B}({K}^{B},\tau )}{{U}_{C}\left({C}^{B},{X}^{B}\right)},$$
(23)

which in the steady state translates into:

$$\overline{\tau }=\psi H{^{\prime}}(\overline{{P }^{B}})\frac{{V}^{B}(K,P)-{V}^{A}(K,P,d)}{{U}_{C}(\overline{{C }^{B},{X}^{B}}) (H(\overline{{P }^{B}})+\gamma +\rho )}+\frac{H(\overline{{P }^{B}}){\tau }_{A}{V}_{K}^{A}(K,P,d)}{{U}_{C}(\overline{{C }^{B},{X}^{B}}) (H(\overline{{P }^{B}})+\gamma +\theta )}-\psi \frac{Z{^{\prime}}(\overline{{P }^{B}}){Y}^{B}(\overline{{K }^{B}},\overline{\tau })}{ H(\overline{{P }^{B}})+\gamma +\theta }.$$
(24)

Substituting for \({V}^{A}(K,d)\) from Eq. (9), \({V}^{B}(K,P)\) from Eq. (16) and using the utility function from Eq. (4) we derive the formula for the carbon tax in the steady state in the model with loss aversion and catastrophic and non-catastrophic damages as:

$$\overline{\tau }=\psi H{^{\prime}}(\overline{{P }^{B}})\frac{\xi ({\overline{{C }^{B}}}^{1-\sigma }-{\overline{{C }^{A}}}^{1-\sigma })}{(1-\sigma )(H(\overline{{P }^{B}})+\gamma +\theta )(\theta +H(\overline{{P }^{B}}))}+\psi H{^{\prime}}(\overline{{P }^{B}})\frac{((\xi -1)({m}^{\chi }(1+\nu )-\nu {(m-\overline{{C }^{A}}+\overline{{X }^{A}})}^{\chi }-{(m+\overline{{C }^{B}}-\overline{{X }^{B}})}^{\chi }))}{(H(\overline{{P }^{B}})+\gamma +\theta )(\theta +H(\overline{{P }^{B}}))}+\frac{H(\overline{{P }^{B}}){\tau }_{A}(\xi {\overline{{C }^{A}}}^{-\sigma }+(1-\xi )\chi {(m+\overline{{C }^{A}}-\overline{{X }^{A}})}^{-1+\chi }+\rho {V}_{X}^{A}(K,P,d))}{(\xi {\overline{{C }^{B}}}^{-\sigma }+(1-\xi )\chi {(m+\overline{{C }^{B}}-\overline{{X }^{B}})}^{-1+\chi })(H(\overline{{P }^{B}})+\gamma +\theta )}-\psi \frac{Z{^{\prime}}(\overline{{P }^{B}}){Y}^{B}(\overline{{K }^{B}},\overline{\tau })}{ H(\overline{{P }^{B}})+\gamma +\theta }.$$
(76)

Appendix 6: Derivation of the Rate of Return on Capital in the Model with Loss Aversion

In the model with loss aversion, a consumer takes into account the effects of her current consumption on her future reference stock. As a result, the dynamics of the reference stock enters the current value Hamiltonian:

$$H\equiv U\left(\frac{{C}_{t}}{{L}_{t}},\frac{{X}_{t}}{{L}_{t}}\right){L}_{t}+{\lambda }_{t}\left(Z\left({P}_{t}\right){Y}_{t}\left(.\right)-g{F}_{t}-b{R}_{t}-{C}_{t}-\delta {K}_{t}\right)+{\mu }_{t}\rho ({C}_{t}-{X}_{t})-{\pi }_{t}(\psi {F}_{t}-\gamma {P}_{t}),$$
(77)

where \({\mu }_{t}\) is the shadow value of the reference stock of consumption.

We derive the optimality conditions for capital, consumption and evolution of the shadow value of the reference stock:

$$\dot{{\lambda }_{t}}={\lambda }_{t}(\delta +\theta -Z\left({P}_{t}\right){Y}_{{K}_{t}}\left(.\right)),$$
(78)
$${U}_{{C}_{t}}\left({C}_{t},{X}_{t}\right)={\lambda }_{t}-{\mu }_{t}\rho ,$$
(79)
$$\dot{{\mu }_{t}}=\left(\rho +\theta \right){\mu }_{t}-{U}_{{X}_{t}}\left({C}_{t},{X}_{t}\right).$$
(80)

To derive the Euler equation in the model with loss aversion, we first differentiate Eq. (79) with respect to time, which gives:

$${{\dot{{\lambda }_{t}}=\dot{U}_{{C}_{t}}\left({C}_{t},\,{X}_{t}\right)}+\dot{{\mu }_{t}}\rho}.$$
(81)

Substituting Eq. (80) into (81) gives:

$$\dot{{\lambda }_{t}}=\dot{{U}_{{C}_{t}}\left({C}_{t},{X}_{t}\right)}+\left(\left(\rho +\theta \right){\mu }_{t}- {U}_{{X}_{t}}\left({C}_{t},{X}_{t}\right)\right)\rho .$$
(82)

After combining Eq. (82) with Eq. (78) and substituting \({\lambda }_{t}={{U}_{{C}_{t}}\left({C}_{t},{H}_{t}\right)-\mu }_{t}\rho\) (re-arranged from Eq. 79) to Eq. (82), we obtain:

$$\dot{{U}_{{C}_{t}}\left({C}_{t},{X}_{t}\right)}+\left(\left(\rho +\theta \right){\mu }_{t}- {U}_{{X}_{t}}\left({C}_{t},{X}_{t}\right)\right)\rho =\left({U}_{{C}_{t}}\left({C}_{t},{X}_{t}\right)+{\mu }_{t}\rho \right)\left(\delta +\theta -Z\left({P}_{t}\right){Y}_{{K}_{t}}\left(.\right)\right).$$
(83)

Using that \(\dot{{U}_{{C}_{t}}\left({C}_{t},{X}_{t}\right)}=\dot{{C}_{t}}{U}_{{C}_{t}{C}_{t}}\left({C}_{t},{X}_{t}\right)+\dot{{X}_{t}}{U}_{{C}_{t}{X}_{t}}\left({C}_{t},{X}_{t}\right)\), substituting \(\dot{{X}_{t}}=\rho \left({C}_{t}-{H}_{t}\right)\) (from Eq. 8) and rearranging, we receive the Euler equation:

$${\dot{C}}_{t}=\frac{({U}_{{C}_{t}}\left({C}_{t},{X}_{t}\right)+\rho {\mu }_{t})(\theta -{r}_{t})}{{U}_{{C}_{t}{C}_{t}}\left({C}_{t},{X}_{t}\right)}-\frac{\rho \left({C}_{t}-{X}_{t}\right){U}_{{C}_{t}{X}_{t}}\left({C}_{t},{X}_{t}\right)}{{U}_{{C}_{t}{C}_{t}}\left({C}_{t},{X}_{t}\right)}-\frac{\rho \left({\mu }_{t}\left(\rho +\theta \right)-{U}_{{X}_{t}}\left({C}_{t},{X}_{t}\right)\right)}{{U}_{{C}_{t}{C}_{t}}\left({C}_{t},{X}_{t}\right)},$$
(84)

where \({r}_{t}\equiv Z\left({P}_{t}\right){Y}_{{K}_{t}}\left(.\right)-\delta\).

After substituting formulas for \({U}_{{C}_{t}}\left({C}_{t},{X}_{t}\right)\), \({U}_{{X}_{t}}\left({C}_{t},{X}_{t}\right)\), \({U}_{{C}_{t}{X}_{t}}\left({C}_{t},{X}_{t}\right)\) and \({U}_{{C}_{t}{C}_{t}}\left({C}_{t},{X}_{t}\right)\) into Eq. (84), using the utility function from Eq. (4) and simplifying we receive:

$$\dot{C}_{t} = - \left(\left(\left( {\xi C_{t}^{ - \sigma } - \left( { - 1 + \xi } \right)\chi \left( {m + C_{t} - X_{t} } \right)^{ - 1 + \chi } + \rho \mu_{t} } \right)( - r + \theta - (\left( { - 1 + \xi } \right)\rho \left( { - 1 + \chi } \right) \chi \left( {C_{t} - X_{t} } \right)\left( {m + C_{t} - X_{t} } \right)^{ - 2 + \chi } )/\left( {\xi C_{t}^{ - \sigma } - \left( { - 1 + \xi } \right)\chi \left( {m + C_{t} - X_{t} } \right)^{ - 1 + \chi } + \rho \mu_{t} } \right) + \frac{{\left( { - 1 + \xi } \right)\rho \chi \left( {m + C_{t} - X_{t} } \right)^{ - 1 + \chi } }}{{\xi C_{t}^{ - \sigma } - \left( { - 1 + \xi } \right)\chi \left( {m + C_{t} - X_{t} } \right)^{ - 1 + \chi } + \rho \mu_{t} }} - \frac{{\rho \left( {\theta + \rho } \right)\mu_{t} }}{{\xi C_{t}^{ - \sigma } - \left( { - 1 + \xi } \right)\chi \left( {m + C_{t} - X_{t} } \right)^{ - 1 + \chi } + \rho \mu_{t} }})\right) /\left( {\xi \sigma C_{t}^{ - 1 - \sigma } + \left( { - 1 + \xi } \right)\left( { - 1 + \chi } \right)\chi \left( {m + C_{t} - X_{t} } \right)^{ - 2 + \chi } } \right)\right).$$
(85)

Using Eq. (84) we derive the rate of return on capital in the model with loss aversion:

$${r}_{t}=\theta -\frac{{\dot{C}}_{t}{U}_{{C}_{t}{C}_{t}}\left({C}_{t},{X}_{t}\right)}{\left({U}_{{C}_{t}}\left({C}_{t},{X}_{t}\right)+\rho {\mu }_{t}\right)}-\frac{\rho \left({C}_{t}-{X}_{t}\right){U}_{{C}_{t}{X}_{t}}\left({C}_{t},{X}_{t}\right)}{\left({U}_{{C}_{t}}\left({C}_{t},{X}_{t}\right)+\rho {\mu }_{t}\right)} -\frac{\rho \left({\mu }_{t}\left(\rho +\theta \right)-{U}_{{X}_{t}}\left({C}_{t},{X}_{t}\right)\right)}{\left({U}_{{C}_{t}}\left({C}_{t},{X}_{t}\right)+\rho {\mu }_{t}\right)}.$$
(86)

After substituting formulas for \({U}_{{C}_{t}}\left({C}_{t},{X}_{t}\right)\), \({U}_{{X}_{t}}\left({C}_{t},{X}_{t}\right)\), \({U}_{{C}_{t}{X}_{t}}\left({C}_{t},{X}_{t}\right)\) and \({U}_{{C}_{t}{C}_{t}}\left({C}_{t},{X}_{t}\right)\) into Eq. (86), using the utility function from Eq. (4) and simplifying we receive:

$${r}_{t}=\theta -\frac{{\dot{C}}_{t}(-\xi \sigma {{C}_{t}}^{-1-\sigma }+(1-\xi )(\chi -1)\chi {\left(m+{C}_{t}-{X}_{t}\right)}^{-2+\chi })}{\xi {{C}_{t}}^{-\sigma }-\left(\xi -1\right)\chi {\left(m+{C}_{t}-{X}_{t}\right)}^{-1+\chi }+\rho {\mu }_{t}}-\frac{\rho ({C}_{t}-{X}_{t})(\xi -1)(\chi -1)\chi {\left(m+{C}_{t}-{X}_{t}\right)}^{-2+\chi }}{\xi {{C}_{t}}^{-\sigma }-\left(\xi -1\right)\chi {\left(m+{C}_{t}-{X}_{t}\right)}^{-1+\chi }+\rho {\mu }_{t}}-\frac{\rho ({\mu }_{t}\left(\rho +\theta \right)-(1-\xi )\chi {\left(m+{C}_{t}-{X}_{t}\right)}^{-1+\chi })}{\xi {{C}_{t}}^{-\sigma }-\left(\xi -1\right)\chi {\left(m+{C}_{t}-{X}_{t}\right)}^{-1+\chi }+\rho {\mu }_{t}}.$$
(87)

Appendix 7: Carbon Tax with Gradual and Catastrophic Damages in the Model with Duffie-Epstein Preferences

In this section, we modify the model by van der Ploeg and de Zeeuw (2018) to compare the model with loss aversion to the E–Z preferences. Formally, the authors use the stochastic differential utility framework of Duffie and Epstein (1992) to approximate the solutions under the Epstein and Zin (1989) preferences. This is motivated by the fact that the E–Z preferences have been proposed for the discrete time, whereas van der Ploeg and de Zeeuw (2018) use a continuous-time Ramsey growth model with climate tipping.

In general, in the model with Duffie-Epstein preferences the social planner maximizes the modified expected value of the social welfare function:

$$\underset{C,F}{\mathrm{max}}E\left({\int }_{0}^{\infty }\Phi \left({C}_{t},{\widetilde{V}}_{t}\right){e}^{-\theta t}dt\right),$$
(88)

where value function \({\widetilde{V}}_{t}=\widetilde{V}({K}_{t},{P}_{t})\) is expressed by the following formula:

$$\Phi \left({C}_{t},{\widetilde{V}}_{t}\right)=\frac{\widetilde{\theta }}{1-{\sigma }_{I}}\frac{{{C}_{t}}^{1-{\sigma }_{I}}-{((1-{\sigma }_{R}){\widetilde{V}}_{t})}^{\frac{1-{\sigma }_{I}}{1-{\sigma }_{R}}}}{{((1-{\sigma }_{R}){\widetilde{V}}_{t})}^{\frac{{\sigma }_{R}-{\sigma }_{I}}{1-{\sigma }_{R}}}}$$
(89)

and \(\Phi \left({C}_{t},{\widetilde{V}}_{t}\right)\) is the aggregator function for Duffie-Epstein preferences. Parameter \({\sigma }_{I}>1\) is \(\frac{1}{EIS}\) (the intertemporal aspect) and \({\sigma }_{R}>0\) is RRA. The modified pure time preference parameter is \(\widetilde{\theta }\) where \(\widetilde{\theta }=\theta ({\sigma }_{I}-1){g}_{t}\).

The optimization problem after the climate regime shift gives the following Hamilton–Jacobi–Bellman (HJB) equation:

$$\widetilde{\theta }\left(\frac{1-{\sigma }_{R}}{1-{\sigma }_{I}}\right)\widetilde{{V}^{A}}\left(K,P,d\right)\underset{C,F}{=max}\left(\frac{\widetilde{\theta }}{1-{\sigma }_{I}}\right){{C}^{A}}^{1-{\sigma }_{I}}{\left(\left(1-{\sigma }_{R}\right)\widetilde{{V}^{A}}\left(K,P,d\right)\right)}^{\frac{{\sigma }_{I}-{\sigma }_{R}}{1-{\sigma }_{R}}}+\widetilde{{V}_{K}^{A}}\left(K,P\right)\left({\left(1-d\right)Z\left({P}^{A}\right)AY}^{A}\left({K}^{A},{F}^{A}\right)-{C}^{A}-\left(g+{\tau }_{A}\right){F}^{A}-{bR}^{A}-\delta {K}^{A}\right) +\widetilde{{V}_{P}^{A}}\left(K,P,d\right)\left(\psi {F}^{A}-\gamma {P}^{A}\right).$$
(90)

This yields the optimality condition for consumption before the climate regime shift:

$$\widetilde{\theta }{{C}^{A}}^{1-{\sigma }_{I}}{\left(\left(1-{\sigma }_{R}\right)\widetilde{{V}^{A}}(K,P,d)\right)}^{\frac{{\sigma }_{I}-{\sigma }_{R}}{1-{\sigma }_{R}}}=\widetilde{{V}_{K}^{A}}\left(K,P\right),$$
(91)

and the formula for the carbon tax after the catastrophe:

$${\tau }_{A}=-\psi \frac{\widetilde{{V}_{P}^{A}}(K,P,d)}{\widetilde{{V}_{K}^{A}}(K,P)}.$$
(92)

Together with Eqs. (2a) and (2b) this allows us to solve for the value function before the climate regime shift \(\widetilde{{V}^{A}}\left(K,P,d\right):\)

$$\widetilde{{V}^{A}}\left(K,P,d\right)=\frac{1}{1-{\sigma }_{R}}{\left(\left(1-{\sigma }_{I}\right)\widetilde{\theta }\widetilde{{V}^{A}}(K,P,d)\right)}^{\frac{1-{\sigma }_{R}}{1-{\sigma }_{I}}}.$$
(93)

The optimality condition for consumption after the climate regime shift thus boils down to the usual \({{C}^{A}}^{1-{\sigma }_{I}}=\widetilde{{V}_{K}^{A}}(K,P)\), which is independent of RRA as uncertainty has by this time been resolved.

The optimization problem before the climate regime shift gives the following Hamilton–Jacobi–Bellman (HJB) equation:

$$0=\underset{C,F}{max}\left(\Phi \left({{C}^{B}}_{t},{\widetilde{{V}^{B}}}_{t}\right)-H\left({P}^{B}\right)\left(\widetilde{{V}^{B}}\left(K,P\right)-\widetilde{{V}^{A}}\left(K,P,d\right)\right)+\widetilde{{V}_{P}^{B}}\left(K,P\right)\left(\psi {F}^{B}-\gamma {P}^{B}\right)\widetilde{{V}_{K}^{B}}\left(K,P\right)\left({Z\left({P}^{B}\right)AY}^{B}\left({K}^{B},{F}^{B}\right)-{C}^{B}-\left(g+\tau \right){F}^{B}-{bR}^{B}-\delta {K}^{B}\right)\right).$$
(94)

The optimality condition for consumption before the climate regime shift is:

$${{C}^{B}}^{-{\sigma }_{I}}={\left(\left(1-{\sigma }_{R}\right)\widetilde{{V}^{B}}(K,P,d)\right)}^{\frac{{\sigma }_{R}-{\sigma }_{I}}{1-{\sigma }_{R}}}\frac{\widetilde{{V}_{K}^{B}}(K,P)}{\widetilde{\theta }},$$
(95)

while the differential equation for consumption before the regime shift \({C}^{B}\) as a function of capital \({K}^{B}\) and carbon emissions via the hazard function \(H(P)\) is:

$$\dot{{C}^{B}}=-\frac{{C}^{B}}{{\sigma }_{I}}\left({Y}_{t}^{B}\left({K}_{t}^{B},\tau \right)-\frac{{\sigma }_{R}-1}{1-{\sigma }_{I}}\widetilde{\theta }+\vartheta -\frac{\widetilde{\theta }{{C}^{B}}^{1-{\sigma }_{I}}}{1-{\sigma }_{I}}{({\sigma }_{I}-{\sigma }_{R})\left(\left(1-{\sigma }_{R}\right)\widetilde{{V}^{B}}(K,P,d)\right)}^{\frac{{\sigma }_{I}-1}{1-{\sigma }_{R}}}+\left(\frac{{\sigma }_{R}-{\sigma }_{I}}{1-{\sigma }_{R}}\right)\frac{\dot{\widetilde{{V}^{B}}}}{\widetilde{{V}^{B}}}\right),$$
(96)

where \(\vartheta\) is the precautionary return on capital accumulation defined as:

$$\vartheta =H\left({P}^{B}\right)\left(\frac{\widetilde{\theta }\widetilde{{V}_{K}^{A}}\left(K,P,d\right)-\widetilde{{V}_{K}^{B}}\left(K,P\right)}{\widetilde{{V}_{K}^{B}}\left(K,P\right)}-1\right),$$
(97)

where:

$${{\widetilde{{V}_{K}^{B}}\left(K,P\right)=\widetilde{\theta }C}^{B}}^{1-{\sigma }_{I}}{\left(\left(1-{\sigma }_{R}\right)\widetilde{{V}^{B}}(K,P,d)\right)}^{\frac{{\sigma }_{R}-{\sigma }_{I}}{{\sigma }_{R}-1}}.$$
(98)

We can derive the carbon tax as:

$$\dot{\tau }=({Y}_{K}^{B}(K,P)+\gamma +H({P}^{B})+\widetilde{\theta })\tau -\psi H{^{\prime}}({P}^{B})\frac{\widetilde{{V}^{B}}(K,P)-\widetilde{{V}^{A}}(K,P,d)}{\widetilde{{V}_{K}^{B}}(K,P)}-\psi \frac{H\left({P}^{B}\right)\widetilde{{V}_{P}^{A}}\left(K,P,d\right)+\widetilde{{V}_{K}^{B}}(K,P)Z{^{\prime}}({P}^{B}){Y}^{B}({K}^{B},\tau )}{\widetilde{{V}_{K}^{B}}(K,P)}.$$
(99)

where the formula for \(\widetilde{{V}_{K}^{B}}\left(K,P\right)\) is given by Eq. (98).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czyz, D., Safarzynska, K. Catastrophic Damages and the Optimal Carbon Tax Under Loss Aversion. Environ Resource Econ 85, 303–340 (2023). https://doi.org/10.1007/s10640-023-00768-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10640-023-00768-4

Keywords

Navigation