Skip to main content

Advertisement

Log in

Discovery of a pyrimidine compound endowed with antitumor activity

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Recently, some synthetic nitrogen-based heterocyclic molecules, such as PJ34, have shown pronounced antitumor activity. Therefore, we designed and synthesized new derivatives characterized by a nitrogen-containing scaffold and evaluated their antiproliferative properties in tumor cells. We herein report the effects of three newly synthesized compounds on cell lines from three different human cancers: triple-negative breast cancer, colon carcinoma and glioblastoma. We found that two of these compounds did not affect proliferation, while the third significantly inhibited replication of the three cell lines. Moreover, this third molecule at 20 μM led to the upregulation of p21 and p27 and blockage of the cell cycle at G0/G1; in addition, it induced apoptosis in all three cell lines when used at higher concentrations (30–50 μM). The results demonstrate that this compound is a potent inhibitor of replication, an inducer of apoptosis and a negative regulator of cell cycle progression for cancer cells of different histotypes. Our data suggest a potential role for this new molecule as an interesting and powerful tool for new approaches in treating various cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4(4):253–265

    Article  CAS  Google Scholar 

  2. Harrison MR, Holen KD, Liu G (2009) Beyond taxanes: a review of novel agents that target mitotic tubulin and microtubules, kinases, and kinesins. Clin Adv Hematol Oncol 7:54–64

    PubMed  PubMed Central  Google Scholar 

  3. Tumir LM, Radic Stojkovic M, Plantanida I (2014) Come-back of the phenanthridine and phenanthridinium derivatives in the 21st century. Beilstein J Org Chem 10:2930–2954. https://doi.org/10.3762/bjoc.10.312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Visochek L, Castiel A, Mittelman L, Elkin M, Atias D, Golan T, Izraeli S, Peretz T, Cohen-Armon M (2017) Exclusive destruction of mitotic spindles in human cancer cells. Oncotarget 8:20813–20824. https://doi.org/10.18632/oncotarget.15343

    Article  PubMed  PubMed Central  Google Scholar 

  5. Inbar-Rozensal D, Castiel A, Visochek L, Castel D, Dantzer F, Izraeli S, Cohen-Armon M (2009) A selective eradication of human nonhereditary breast cancer cells by phenanthridine-derived polyADP-ribose polymerase inhibitors. Breast Cancer Res 11:R78. https://doi.org/10.1186/bcr2445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Castiel A, Visochek L, Mittelman L, Dantzer F, Izraeli S, Cohen-Armon M (2011) A phenanthrene derived PARP inhibitor is an extra-centrosomes de-clustering agent exclusively eradicating human cancer cells. BMC Cancer 11:412–419

    Article  CAS  Google Scholar 

  7. Castiel A, Visochek L, Mittelman L, Zilberstein Y, Dantzer F, Izraeli S, Cohen-Armon M (2013) Cell death associated with abnormal mitosis observed by confocal imaging in live cancer cells. J Vis Exp 78:e50568. https://doi.org/10.3791/50568

    Article  CAS  Google Scholar 

  8. Li Y, Lu W, Chen D, Boohaker RJ, Zhai L, Padmalayam I, Wennerberg K, Xu B, Zhang W (2015) KIFC1 is a novel potential therapeutic target for breast cancer. Cancer Biol Ther 16:1316–1322. https://doi.org/10.1080/15384047.2015.1070980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kleylein-Sohn J, Pollinger B, Ohmer M, Hofmann F, Nigg EA, Hemmings BA, Wartmann M (2012) Acentrosomal spindle organization renders cancer cells dependent on the kinesin HSET. J Cell Sci 125:5391–5402. https://doi.org/10.1242/jcs.107474

    Article  CAS  PubMed  Google Scholar 

  10. Xiao YX, Yang WX (2016) KIFC1: a promising chemotherapy target for cancer treatment? Oncotarget 7:48656–48670

    PubMed  PubMed Central  Google Scholar 

  11. Vitaku E, Smith DT, Njardarson JT (2014) Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among US FDA approved pharmaceuticals. J Med Chem 57:10257–10274. https://doi.org/10.1021/jm501100b

    Article  CAS  PubMed  Google Scholar 

  12. Martins P, Jesus J, Santos S, Raposo LR, Roma-Rodrigues C, Baptista PV, Fernandes AR (2015) Heterocyclic anticancer compounds: recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules 20:16852–16891. https://doi.org/10.3390/molecules200916852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hosseinzadeh Z, Ramazani A, Razzaghi-Asl N (2018) Anti-cancer nitrogen-containing heterocyclic compounds. Curr Org Chem 22:1–24. https://doi.org/10.2174/1385272822666181008142138

    Article  CAS  Google Scholar 

  14. Ragab FAF, Abou-Seri SM, Abdel-Aziz SA, Alfayomy AM, Aboelmagd M (2017) Design, synthesis and anticancer activity of new monastrol analogues bearing 1,3,4-oxadiazole moiety. Eur J Med Chem 138:140–151. https://doi.org/10.1016/j.ejmech.2017.06.026

    Article  CAS  PubMed  Google Scholar 

  15. Park HW, Ma Z, Zhu H, Jiang S, Robinson RC, Endow SA (2017) Structural basis of small molecule ATPase inhibition of a human mitotic kinesin motor protein. Sci Rep 7:15121. https://doi.org/10.1038/s41598-017-14754-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Saccoliti F, Angiulli G, Pupo G, Pescatori L, Madia VN, Messore A, Colotti G, Fiorillo A, Scipione L, Gramiccia M, Di Muccio T, Di Santo R, Costi R, Ilari A (2017) Inhibition of Leishmania infantum Trypanothione reductase by diaryl sulfide derivatives. J Enzyme Inhib Med Chem 32:304–310. https://doi.org/10.1080/14756366.2016.1250755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jain KK (2018) A critical overview of targeted therapies for glioblastoma. Front Oncol 8:419. https://doi.org/10.3389/fonc.2018.00419

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chavez KJ, Garimella SV, Lipkowitz S (2010) Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer. Breast Dis 32:35–48. https://doi.org/10.3233/BD-2010-0307

    Article  PubMed  PubMed Central  Google Scholar 

  19. Muthuraja P, Himesh M, Prakash S, Venkatasubramanian U, Manisankar P (2018) Synthesis of N-(1-(6-acetamido-5-phenylpyrimidin-4-yl) piperidin-3-yl) amide derivatives as potential inhibitors for mitotic kinesin spindle protein. Eur J Med Chem 148:106–115. https://doi.org/10.1016/j.ejmech.2018.02.010

    Article  CAS  PubMed  Google Scholar 

  20. Davis PJ, Harris L, Karim A, Thompson AL, Gilpin M, Moloney MG, Pound MJ, Thompson C (2011) Substituted diaryldiazomethanes and diazofluorenes: structure, reactivity and stability. Tetrahedron Lett 52:1553–1556. https://doi.org/10.1016/j.tetlet.2011.01.116

    Article  CAS  Google Scholar 

  21. Li JH, Kalish VJ, Zhang J, Serdyuk LE, Ferraris DV, Xiao G, Kletzly PW (2001) Sulfonamide and carbamide derivatives of 6(5H) phenanthridinones and their uses. Patent WO2001090077A1.

  22. Taglieri L, Nardo T, Vicinanza R, Ross JM, Scarpa S, Coppotelli G (2017) Thyroid hormone regulates fibronectin expression through the activation of hypoxia inducible factor 1. Biochem Biophys Res Commun 493:1304–1310

    Article  CAS  Google Scholar 

  23. Gulappa T, Reddy RS, Suman S, Nyakeriga AM, Damodaran C (2013) Molecular interplay between cdk4 and p21 dictates G0/G1 cell cycle arrest in prostate cancer cells. Cancer Lett 337:177–183. https://doi.org/10.1016/j.canlet.2013.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Georgakilas Ag MOA, Bonner WM (2017) P21: a two-faced genome guardian. Trends Mol Med 23:310–319

    Article  Google Scholar 

  25. Abbas T, Dutta A (2009) P21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9:400–414

    Article  CAS  Google Scholar 

  26. Xia X, Ma Q, Li X, Ji T, Chen P, Xu H, Li K, Fang Y, Weng D, Weng Y, Liao S, Han Z, Liu R, Zhu T, Wang S, Xu G, Meng L, Zhou J, Ma D (2011) Cytoplasmic p21 is a potential predictor for cisplatin sensitivity in ovarian cancer. BMC Cancer 11:399. https://doi.org/10.1186/1471-2407-11-399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Koster R, di Pietro A, Timmer-Bosscha H, Gibcus JH, van den Berg A, Suurmeijer AJ, Bischoff R, Gietema JA, de Jong S (2010) Cytoplasmic p21 expression levels determine cisplatin resistance in human testicular cancer. J Clin Invest 120:3594–3605. https://doi.org/10.1172/JCI41939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xia X, Ma Q, Li X, Ji T, Chen P, Xu H, Li K, Fang Y, Weng D, Weng Y, Liao S, Han Z, Liu R, Zhu T, Wang S, Xu G, Meng L, Zhou J, Ma D (2011) Cytoplasmic p21 is a potential predictor for cisplatin sensitivity in ovarian cancer. BMC Cancer 11:399. https://doi.org/10.1186/1471-2407-11-399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Abukhdeir AM, Park BH (2008) P21 and p27: roles in carcinogenesis and drug resistance. Expert Rev Mol Med 10:e19. https://doi.org/10.1017/S1462399408000744

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yoon MK, Mitrea DM, Ou L, Kriwacki RW (2012) Cell cycle regulation by the intrinsically disordered proteins p21 and p27. Biochem Soc Trans 40:981–988

    Article  CAS  Google Scholar 

  31. Cuadrado M, Gutierrez-Martinez P, Swat A, Nebreda AR, Fernandez-Capetillo O (2009) P27 stabilization is essential fot the mainteinance of cell cycle arrest in response to DNA damage. Cancer Res 69:8726–8732. https://doi.org/10.1158/0008-5472.CAN-09-0729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhuang Y, Miskimins WK (2008) Cell cycle arrest in metformin treated breast cancer cells involves activation of AMPK, downregulation of cyclin D1 and requires p21 or p27. J Mol Signal 3:18–29. https://doi.org/10.1186/1750-2187-3-18.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zohny SF, Al-Malki AL, Zamzami MA, Choundhry H (2018) P21: its paradoxical effect in the regulation of breast cancer. Breast Cancer 26:131–137. https://doi.org/10.1007/s12282-018-0913-1

    Article  PubMed  Google Scholar 

Download references

Funding

This research was supported by Sapienza University through the grant Ateneo 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Costi.

Ethics declarations

Conflict of interest

All individual authors have declared that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in this study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taglieri, L., Saccoliti, F., Nicolai, A. et al. Discovery of a pyrimidine compound endowed with antitumor activity. Invest New Drugs 38, 39–49 (2020). https://doi.org/10.1007/s10637-019-00762-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-019-00762-y

Keywords

Navigation