Skip to main content

Advertisement

Log in

Peptide aptamer identified by molecular docking targeting translationally controlled tumor protein in leukemia cells

  • SHORT REPORT
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Bioinformatics screening and molecular docking analyses were utilized to select high affinity peptides targeting translationally controlled tumor protein (TCTP). Selected peptide aptamers were tested towards cancer cell lines with different levels of TCTP expression. One peptide (WGQWPYHC) revealed specific cytotoxicity according to the TCTP expression in tumor cells without affecting normal cells. Western blot analysis showed peptide-induced down-regulation of TCTP as primary target as well as of cell-cycle related downstream proteins (CDK2, CDK6, Cyclin D3) in MOLT-4 leukemia cells. “WGQWPYHC” deserves further analysis for targeted therapy of TCTP-expressing tumor cells.

Molecular docking on TCTP, cytotoxicity toward MOLT-4 leukemia cell line and downregulation of CDK2, CDK6, CyclinD3 and TCTP proteins

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Michor F, Nowak MA, Iwasa Y (2006) Evolution of resistance to cancer therapy. Curr Pharm Des 12(3):261–271

    Article  CAS  PubMed  Google Scholar 

  2. Galmarini CM, Galmarini FC (2003) Multidrug resistance in cancer therapy: role of the microenvironment. Curr Opin Investig Drugs 4(12):1416–1421

    CAS  PubMed  Google Scholar 

  3. Tsuruo T, Naito M, Tomida A, Fujita N, Mashima T, Sakamoto H, Haga N (2003) Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer Sci 94(1):15–21

    Article  CAS  PubMed  Google Scholar 

  4. Nishina T, Yamaguchi N, Gohda J, Semba K, Inoue J (2009) NIK is involved in constitutive activation of the alternative NF-kappaB pathway and proliferation of pancreatic cancer cells. Biochem Biophys Res Commun 388(1):96–101. doi:10.1016/j.bbrc.2009.07.125

    Article  CAS  PubMed  Google Scholar 

  5. Huang C, Park CC, Hilsenbeck SG, Ward R, Rimawi MF, Wang YC, Shou J, Bissell MJ, Osborne CK, Schiff R (2011) Beta1 integrin mediates an alternative survival pathway in breast cancer cells resistant to lapatinib. Breast cancer research: BCR 13(4):R84. doi:10.1186/bcr2936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. He H, Chen J, Xie WP, Cao S, Hu HY, Yang LQ, Gong B (2013) Ketamine used as an acesodyne in human breast cancer therapy causes an undesirable side effect, upregulating anti-apoptosis protein bcl-2 expression. Genet Mol Res 12(2):1907–1915. doi:10.4238/2013.January.4.7

    Article  CAS  PubMed  Google Scholar 

  7. Voelcker V, Sticherling M (2011) Acneiform skin lesions as a side effect of therapy with EGFR (epidermal growth factor receptor) inhibitors in Colon Cancer. J Dtsch Dermatol Ges 9:220–220

    Google Scholar 

  8. Gamboa EO, Rehmus EH, Haller N (2010) Fournier’s gangrene as a possible side effect of bevacizumab therapy for resected colorectal cancer. Clin Colorectal Canc 9(1):55–60. doi:10.3816/Ccc.2010.N.008

    Article  CAS  Google Scholar 

  9. Repetto-Llamazares AHV, Larsen RH, Patzke S, Fleten KG, Didierlaurent D, Pichard A, Pouget JP, Dahle J (2015) Targeted cancer therapy with a novel anti-CD37 Beta-Particle Emitting radioimmunoconjugate for treatment of non-Hodgkin Lymphoma. PLoS One 10(6). doi:10.1371/journal.pone.0128816

  10. Liu H, Lu J, Hua Y, Zhang P, Liang Z, Ruan L, Lian C, Shi H, Chen K, Tu Z (2015) Targeting heat-shock protein 90 with ganetespib for molecularly targeted therapy of gastric cancer. Cell Death Dis 6. doi:10.1038/Cddis.2014.555

  11. Carneiro BA, Altman JK, Kaplan JB, Ossenkoppele G, Swords R, Platanias LC, Giles FJ (2015) Targeted therapy of acute myeloid leukemia. Expert Rev Anticancer Ther 15(4):399–413. doi:10.1586/14737140.2015.1004316

    Article  CAS  PubMed  Google Scholar 

  12. Panathur N, Dalimba U, Koushik PV, Alvala M, Yogeeswari P, Sriram D, Kumar V (2013) Identification and characterization of novel indole based small molecules as anticancer agents through SIRT1 inhibition. Eur J Med Chem 69:125–138. doi:10.1016/j.ejmech.2013.08.018

    Article  CAS  PubMed  Google Scholar 

  13. Gurova K (2009) New hopes from old drugs: revisiting DNA-binding small molecules as anticancer agents. Future Oncol 5(10):1685–1704. doi:10.2217/fon.09.127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Seneci P (2012) Small molecules as pro-apoptotic anticancer agents. Pharm Pat Anal 1(4):483–505. doi:10.4155/ppa.12.41

    Article  CAS  PubMed  Google Scholar 

  15. Mendelsohn J (2003) Antibody-mediated EGF receptor blockade as an anticancer therapy: from the laboratory to the clinic. Cancer Immunol Immunother: CII 52(5):342–346. doi:10.1007/s00262-002-0354-7

    PubMed  Google Scholar 

  16. Kim DG, Jin Y, Jin J, Yang H, Joo KM, Lee WS, Shim SR, Kim SW, Yoo J, Lee SH, Yoo JS, Nam DH (2015) Anticancer activity of TTAC-0001, a fully human anti-vascular endothelial growth factor receptor 2 (VEGFR-2/KDR) monoclonal antibody, is associated with inhibition of tumor angiogenesis. MAbs 7(6):1195–1204. doi:10.1080/1942s0862.2015.1086854

    Article  CAS  PubMed  Google Scholar 

  17. Kadioglu O, Malczyk AH, Greten HJ, Efferth T (2015) Aptamers as a novel tool for diagnostics and therapy. Invest New Drug 33(2):513–520. doi:10.1007/s10637-015-0213-y

    Article  CAS  Google Scholar 

  18. Mayer G (2009) The chemical biology of aptamers. Angew Chem Int Edit 48(15):2672–2689. doi:10.1002/anie.200804643

    Article  CAS  Google Scholar 

  19. Hall DA, Ptacek J, Snyder M (2007) Protein microarray technology. Mech Ageing Dev 128(1):161–167. doi:10.1016/j.mad.2006.11.021

    Article  CAS  PubMed  Google Scholar 

  20. Rhinehardt KL, Mohan RV, Srinivas G (2015) Computational modeling of peptide-aptamer binding. Methods Mol Biol 1268:313–333. doi:10.1007/978-1-4939-2285-7_14

    Article  CAS  PubMed  Google Scholar 

  21. Barbas AS, Mi J, Clary BM, White RR (2010) Aptamer applications for targeted cancer therapy. Future Oncol 6(7):1117–1126. doi:10.2217/fon.10.67

    Article  CAS  PubMed  Google Scholar 

  22. Sa LT, Simmons S, Missailidis S, da Silva MI, Santos-Oliveira R (2013) Aptamer-based nanoparticles for cancer targeting. J Drug Target 21(5):427–434. doi:10.3109/1061186X.2012.761222

    Article  CAS  PubMed  Google Scholar 

  23. Westermaier Y, Barril X, Scapozza L (2015) Virtual screening: an in silico tool for interlacing the chemical universe with the proteome. Methods 71:44–57. doi:10.1016/j.ymeth.2014.08.001

    Article  CAS  PubMed  Google Scholar 

  24. Cerqueira NM, Gesto D, Oliveira EF, Santos-Martins D, Bras NF, Sousa SF, Fernandes PA, Ramos MJ (2015) Receptor-based virtual screening protocol for drug discovery. Arch Biochem Biophys 582:56–67. doi:10.1016/j.abb.2015.05.011

    Article  CAS  PubMed  Google Scholar 

  25. Dallakyan S, Olson AJ (2015) Small-molecule library screening by docking with PyRx. Methods Mol Biol 1263:243–250. doi:10.1007/978-1-4939-2269-7_19

    Article  CAS  PubMed  Google Scholar 

  26. Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, Wang J, Yu B, Zhang J, Bryant SH (2015) PubChem substance and compound databases. Nucleic Acids Res. doi:10.1093/nar/gkv951

    Google Scholar 

  27. Ghasemi JB, Shiri F, Pirhadi S, Heidari Z (2015) Discovery of new potential antimalarial compounds using virtual screening of ZINC database. Comb Chem High Throughput Screen 18(2):227–234

    Article  CAS  PubMed  Google Scholar 

  28. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40(Database issue):D1100–D1107. doi:10.1093/nar/gkr777

    Article  CAS  PubMed  Google Scholar 

  29. Duprez W, Bachu P, Stoermer MJ, Tay S, McMahon RM, Fairlie DP, Martin JL (2015) Virtual screening of peptide and peptidomimetic fragments targeted to inhibit bacterial dithiol oxidase DsbA. PLoS One 10(7):e0133805. doi:10.1371/journal.pone.0133805

    Article  PubMed  PubMed Central  Google Scholar 

  30. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. doi:10.1002/jcc.21334

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Park H, Lee J, Lee S (2006) Critical assessment of the automated AutoDock as a new docking tool for virtual screening. Proteins 65(3):549–554. doi:10.1002/prot.21183

    Article  CAS  PubMed  Google Scholar 

  32. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated Docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791. doi:10.1002/Jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Morris GM, Huey R, Olson AJ (2008) Using AutoDock for ligand-receptor docking. Current protocols in bioinformatics/editoral board, Andreas D Baxevanis [et al] Chapter 8:Unit 8 14. doi:10.1002/0471250953.bi0814s24

  34. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19(14):1639–1662. doi:10.1002/(Sici)1096-987x(19981115)19:14<1639::Aid-Jcc10>3.0.Co;2-B

    Article  CAS  Google Scholar 

  35. Fuhrmann J, Rurainski A, Lenhof HP, Neumann D (2010) A new Lamarckian Genetic Algorithm for Flexible Ligand-Receptor Docking. J Comput Chem 31(9):1911–1918. doi:10.1002/jcc.21478

    CAS  PubMed  Google Scholar 

  36. Wang T (2008) Function and dynamics of aptamers: A case study on the malachite. Ph.D. thesis, Iowa State University, Ames, Iowa

  37. Chushak Y, Stone MO (2009) In silico selection of RNA aptamers. Nucleic Acids Res 37(12). doi:10.1093/nar/gkp408

  38. Aubin-Tam ME, Appleyard DC, Ferrari E, Garbin V, Fadiran OO, Kunkel J, Lang MJ (2011) Adhesion through single peptide aptamers. J Phys Chem A 115(16):3657–3664. doi:10.1021/jp1031493

    Article  CAS  PubMed  Google Scholar 

  39. Edgar RC, Batzoglou S (2006) Multiple sequence alignment. Curr Opin Struc Biol 16(3):368–373. doi:10.1016/j.sbi.2006.04.004

    Article  CAS  Google Scholar 

  40. Pei JM (2008) Multiple protein sequence alignment. Curr Opin Struc Biol 18(3):382–386. doi:10.1016/j.sbi.2008.03.007

    Article  CAS  Google Scholar 

  41. Tsubery H, Mironchik M, Fridkin M, Shechter Y (2004) Prolonging the action of protein and peptide drugs by a novel approach of reversible polyethylene glycol modification. J Biol Chem 279(37):38118–38124. doi:10.1074/jbc.M405155200

    Article  CAS  PubMed  Google Scholar 

  42. Grun J, Revell JD, Conza M, Wennemers H (2006) Peptide-polyethylene glycol conjugates: synthesis and properties of peptides bearing a C-terminal polyethylene glycol chain. Bioorgan Med Chem 14(18):6197–6201. doi:10.1016/j.bmc.2006.05.079

    Article  CAS  Google Scholar 

  43. Acunzo J, Baylot V, So A, Rocchi P (2014) TCTP as therapeutic target in cancers. Cancer Treat Rev 40(6):760–769. doi:10.1016/j.ctrv.2014.02.007

    Article  CAS  PubMed  Google Scholar 

  44. Miao X, Chen YB, Xu SL, Zhao T, Liu JY, Li YR, Wang J, Zhang J, Guo GZ (2013) TCTP overexpression is associated with the development and progression of glioma. Tumor Biol 34(6):3357–3361. doi:10.1007/s13277-013-0906-9

    Article  CAS  Google Scholar 

  45. Bommer UA, Thiele BJ (2004) The translationally controlled tumour protein (TCTP). Int J Biochem Cell B 36(3):379–385. doi:10.1016/S1357-2725(03)00213-9

    Article  CAS  Google Scholar 

  46. Tuynder M, Fiucci G, Prieur S, Lespagnol A, Geant A, Beaucourt S, Duflaut D, Besse S, Susini L, Cavarelli J, Moras D, Amson R, Telerman A (2004) Translationally controlled tumor protein is a target of tumor reversion. P Natl Acad Sci USA 101(43):15364–15369. doi:10.1073/pnas.0406776101

    Article  CAS  Google Scholar 

  47. Lucibello M, Gambacurta A, Zonfrillo M, Pierimarchi P, Serafino A, Rasi G, Rubartelli A, Garaci E (2011) TCTP is a critical survival factor that protects cancer cells from oxidative stress-induced cell-death. Exp Cell Res 317(17):2479–2489. doi:10.1016/j.yexcr.2011.07.012

    Article  CAS  PubMed  Google Scholar 

  48. Tsarova K, Yarmola EG, Bubb MR (2010) Identification of a cofilin-like actin-binding site on translationally controlled tumor protein (TCTP). FEBS Lett 584(23):4756–4760. doi:10.1016/j.febslet.2010.10.054

    Article  CAS  PubMed  Google Scholar 

  49. Yang Y, Yang F, Xiong Z, Yan Y, Wang X, Nishino M, Mirkovic D, Nguyen J, Wang H, Yang XF (2005) An N-terminal region of translationally controlled tumor protein is required for its antiapoptotic activity. Oncogene 24(30):4778–4788. doi:10.1038/sj.onc.1208666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jung J, Kim M, Kim MJ, Kim J, Moon J, Lim JS, Kim M, Lee K (2004) Translationally controlled tumor protein interacts with the third cytoplasmic domain of Na,K-ATPase alpha subunit and inhibits the pump activity in HeLa cells. J Biol Chem 279(48):49868–49875. doi:10.1074/jbc.M400895200

    Article  CAS  PubMed  Google Scholar 

  51. Rho SB, Lee JH, Park MS, Byun HJ, Kang S, Seo SS, Kim JY, Park SY (2011) Anti-apoptotic protein TCTP controls the stability of the tumor suppressor p53. FEBS Lett 585(1):29–35. doi:10.1016/j.febslet.2010.11.014

    Article  CAS  PubMed  Google Scholar 

  52. Yoon T, Jung J, Kim M, Lee KM, Choi EC, Lee K (2000) Identification of the self-interaction of rat TCTP/IgE-dependent histamine-releasing factor using yeast two-hybrid system. Arch Biochem Biophys 384(2):379–382. doi:10.1006/abbi.2000.2108

    Article  CAS  PubMed  Google Scholar 

  53. Gachet Y, Tournier S, Lee M, Lazaris-Karatzas A, Poulton T, Bommer UA (1999) The growth-related, translationally controlled protein P23 has properties of a tubulin binding protein and associates transiently with microtubules during the cell cycle. J Cell Sci 112(Pt 8):1257–1271

    CAS  PubMed  Google Scholar 

  54. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: An open chemical toolbox. J Cheminf 3:33. doi:10.1186/1758-2946-3-33

    Article  Google Scholar 

  55. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38 27-38

    Article  CAS  PubMed  Google Scholar 

  56. Cui Q, Lim SK, Zhao B, Hoffmann FM (2005) Selective inhibition of TGF-beta responsive genes by smad-interacting peptide aptamers from FoxH1, Lef1 and CBP. Oncogene 24(24):3864–3874. doi:10.1038/sj.onc.1208556

    Article  CAS  PubMed  Google Scholar 

  57. O’Brien J, Wilson I, Orton T, Pognan F (2000) Investigation of the alamar blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem/FEBS 267(17):5421–5426

    Article  Google Scholar 

  58. Kuete V, Wiench B, Hegazy ME, Mohamed TA, Fankam AG, Shahat AA, Efferth T (2012) Antibacterial activity and cytotoxicity of selected Egyptian medicinal plants. Planta Med 78(2):193–199. doi:10.1055/s-0031-1280319

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Efferth.

Ethics declarations

Conflict of interest

We declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadioglu, O., Efferth, T. Peptide aptamer identified by molecular docking targeting translationally controlled tumor protein in leukemia cells. Invest New Drugs 34, 515–521 (2016). https://doi.org/10.1007/s10637-016-0339-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-016-0339-6

Keywords

Navigation