Skip to main content

Advertisement

Log in

Effects of drug efflux proteins and topoisomerase I mutations on the camptothecin analogue gimatecan

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Clinically relevant resistance to the currently approved camptothecins, irinotecan and topotecan, is poorly understood but may involve increased expression of ATP-dependent drug transporters such as ABCG2 (breast cancer resistant protein, BCRP). Gimatecan (ST1481) is a lipophilic 7-substituted camptothecin derivative that exhibits potent anti-tumor activity in a variety of preclinical cancer models and is under investigation in the clinic. Previous studies reported that gimatecan cytotoxicity was not affected by expression of ABCG2. To confirm and extend this finding, we assessed the cytotoxicity of gimatecan in pairs of isogenic cell lines consisting of transfectants expressing either ABCG2 (including wild-type, R482T, or R482G mutants), ABCB1 (P-glycoprotein), ABCC1 (MRP1), ABCC2 (MRP2), or ABCC4 (MRP4). Expression of wild-type or mutant ABCG2 in human cell lines conferred resistance to topotecan but not to gimatecan. Similarly, intracellular accumulation of gimatecan was unaffected by expression of wild-type ABCG2. Furthermore, expression of P-glycoprotein or MRP2 did not alter gimatecan cytotoxicity. Whereas expression of MRP1 had a minor effect on gimatecan cytotoxicity, expression of ABCC4 was found to significantly reduce the anti-proliferative effects of this drug. Cells containing resistance-conferring mutations in topoisomerase I were also resistant to gimatecan. These results suggest that gimatecan may be more effective than irinotecan or topotecan in cancers that express ABCG2, but not in cancers that express high levels of ABCC4 or contain certain topoisomerase I (TOP1) mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu LF (1989) DNA topoisomerase poisons as antitumor drugs. Ann Rev Biochem 58:351–375

    Article  PubMed  CAS  Google Scholar 

  2. Natelson EA, Giovanella BC, Verschraegen CF, Fehir KM, De Ipolyi PD, Harris N, Sthelin JS (1996) Phase I clinical and pharmacological studies of 20-(S)-camptothecin and 20-(S)-9-nitrocamptothecin as anticancer agents. Ann NY Acad Sci 803:224–230

    Article  PubMed  CAS  Google Scholar 

  3. Hsiang Y, Lihou M, Liu LF (1989) Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by camptothecin. Cancer Res 49:5077–5082

    PubMed  CAS  Google Scholar 

  4. Reid RJ, Benedetti P, Bjornsti MA (1998) Yeast as a model organism for studying the actions of DNA topoisomerase-targeted drugs. Biochim Biophys Acta 1400:289–300

    PubMed  CAS  Google Scholar 

  5. Rubin E, Pantazis P, Bharti A, Toppmeyer D, Giovanella BC, Kufe D (1994) Identification of a mutant human topoisomerase I with intact catalytic activity and resistance to 9-nitro-camptothecin. J Biol Chem 269:2433–2439

    PubMed  CAS  Google Scholar 

  6. Zunino F, Pratesi G (2004) Camptothecins in clinical development. Expert Opin Investig Drugs 13:269–284

    Article  PubMed  CAS  Google Scholar 

  7. Li TK, Houghton PJ, Desai SD, Daroui P, Liu AA, Hars ES, Ruchelman AL, LaVoie EJ, Liu LF (2003) Characterization of ARC-111 as a novel topoisomerase I-targeting anticancer drug. Cancer Res 63:8400–8407

    PubMed  CAS  Google Scholar 

  8. Rasheed ZA, Rubin EH (2003) Mechanisms of resistance to topoisomerase I-targeting drugs. Oncogene 22:7296–7304

    Article  PubMed  CAS  Google Scholar 

  9. Tsurutani J, Nitta T, Hirashima T, Komiya T, Uejima H, Tada H, Syunichi N, Tohda A, Fukuoka M, Nakagawa K (2002) Point mutations in the topoisomerase I gene in patients with non-small cell lung cancer treated with irinotecan. Lung Cancer 35:299–304

    Article  PubMed  Google Scholar 

  10. Ohashi N, Fujiwara Y, Yamaoka N, Katoh O, Satow Y, Yamakido M (1996) No alteration in DNA topoisomerase I gene related to CPT-11 resistance in human lung cancer. Jpn J Cancer Res 87:1280–1287

    PubMed  CAS  Google Scholar 

  11. Takatani H, Oka M, Fukuda M, Narasaki F, Nakano R, Ikeda K, Terashi K, Kinoshita A, Soda H, Kanda T, Schneider E, Kohno S (1997) Gene mutation analysis and quantitation of DNA topoisomerase I in previously untreated non-small cell lung carcinomas. Jpn J Cancer Res 88:160–165

    PubMed  CAS  Google Scholar 

  12. Reid RJ, Kauh EA, Bjornsti MA (1997) Camptothecin sensitivity is mediated by the pleiotropic drug resistance network in yeast. J Biol Chem 272:12091–12099

    Article  PubMed  CAS  Google Scholar 

  13. De Cesare M, Pratesi G, Perego P, Carenini N, Tinelli S, Merlini L, Penco S, Pisano C, Bucci F, Vesci L, Pace S, Capocasa F, Carminati P, Zunino F (2001) Potent antitumor activity and improved pharmacological profile of ST1481, a novel 7-substituted camptothecin. Cancer Res 61:7189–7195

    PubMed  Google Scholar 

  14. Perego P, De Cesare M, De Isabella P, Carenini N, Beggiolin G, Pezzoni G, Palumbo M, Tartaglia L, Pratesi G, Pisano C, Carminati P, Scheffer GL, Zunino F (2001) A novel 7-modified camptothecin analog overcomes BCRP-associated resistance in a mitoxantrone-selected colon carcinoma cell line. Cancer Res 61:6034–6037

    PubMed  CAS  Google Scholar 

  15. Rajendra R, Gounder MK, Saleem A, Schellens JH, Ross DD, Bates SE, Sinko P, Rubin EH (2003) Differential effects of the breast cancer resistance protein on the cellular accumulation and cytotoxicity of 9-aminocamptothecin and 9-nitrocamptothecin. Cancer Res 63:3228–3233

    PubMed  CAS  Google Scholar 

  16. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  17. Robey RW, Honjo Y, Morisaki K, Nadjem TA, Runge S, Risbood M, Poruchynsky MS, Bates SE (2003) Mutations at aminoacid 482 in the ABCG2 gene affect substrate and antagonist specificity. Br J Cancer 89:1971–1978

    Article  PubMed  CAS  Google Scholar 

  18. Leggas M, Adachi M, Scheffer GL, Sun D, Wielinga P, Du G, Mercer KE, Zhuang Y, Panetta JC, Johnston B, Scheper RJ, Stewart CF, Schuetz JD (2004) Mrp4 confers resistance to topotecan and protects the brain from chemotherapy. Mol Cell Biol 24:7612–7621

    Article  PubMed  CAS  Google Scholar 

  19. Tian Q, Zhang J, Tan TM, Chan E, Duan W, Chan SY, Boelsterli UA, Ho PC, Yang H, Bian J-S, Huang M, Zhu Y-Z, Xiong W, Li X, Zhou S (2005) Human multidrug resistance associated protein 4 confers resistance to camptothecins. Pharm Res 22:1837–1853

    Article  PubMed  CAS  Google Scholar 

  20. Andoh T, Ishii K, Suzuki Y, Ikegami Y, Kusunoki Y, Takemot Y, Okada K (1987) Characterization of a mammalian mutant with a camptothecin-resistant DNA topoisomerase I. Proc Natl Acad Sci USA 84:5565–5569

    Article  PubMed  CAS  Google Scholar 

  21. Steinbach D, Sell W, Voigt A, Hermann J, Zintl F, Saurbery A (2002) BCRP gene expression is associated with a poor response to remission induction therapy in childhood acute myeloid leukemia. Leukemia 16:1443–1447

    Article  PubMed  CAS  Google Scholar 

  22. Yoh K, Ishii G, Yokose T, Minegishi Y, Tsuta K, Goto K, Nishiwaki Y, Kodama T, Suga M, Ochiai A (2004) Breast cancer resistance protein impacts clinical outcome in platinum-based chemotherapy for advanced non-small cell lung cancer. Clin Cancer Res 10:1691–1697

    Article  PubMed  CAS  Google Scholar 

  23. Norris MD, Smith J, Tanabe K, Tobin P, Flemming C, Scheffer GL, Wielinga P, Cohn SL, London WB, Marshall GM, Allen JD, Haber M (2005) Expression of multidrug transporter MRP4/ABCC4 is a marker of poor prognosis in neuroblastoma and confers resistance to irinotecan in vitro. Mol Cancer Ther 4:547–553

    Article  PubMed  CAS  Google Scholar 

  24. Chrencik JE, Staker BL, Burgin AB, Pourquier P, Pommier Y, Stewart L, Redinbo MR (2004) Mechanisms of camptothecin resistance by human topoisomerase I mutations. J Mol Biol 339:773–784

    Article  PubMed  CAS  Google Scholar 

  25. Louvard D (1980) Apical membrane aminopeptidase appears at site of cell–cell contact in cultured kidney epithelial cells. Proc Natl Acad Sci USA 77:4132–4136

    Article  PubMed  CAS  Google Scholar 

  26. Pastan I, Gottesman MM, Ueda K, Lovelace E, Rutherford AV, Willingham MC (1988) A retrovirus carrying an MDR1 cDNA confers multidrug resistance and polarized expression of P-glycoprotein in MDCK cells. Proc Natl Acad Sci USA 85:4486–4490

    Article  PubMed  CAS  Google Scholar 

  27. Bakos E, Evers R, Szakács G, Tusnády GE, Walker E, Szabó K, de Haas M, van Deemter L, Borst P, Varadi A, Sarkadi B (1998) Functional multidrug resistance rotein (MRP1) lacking the N-terminal transmembrane domain. J Biol Chem 273:32167–32175

    Article  PubMed  CAS  Google Scholar 

  28. Evers R, Kool M, van Deemter L, Janssen H, Calafat J, Oomen LC, Paulusma CC, Oude Elferink RP, Baas F, Schinkel AH, Borst P (1998) Drug export activity of the human canalicular multispecific organic anion transporter in polarized kidney MDCK cells expressing cMOAT (MRP2) cDNA. J Clin Invest 101:1310–1319

    PubMed  CAS  Google Scholar 

  29. Adachi M, Sampath J, Lan AB, Sun D, Hargrove P, Flatley R, Tatum A, Edwards MZ, Wezeman M, Matherly L, Drake R, Schuetz J (2002) Expression of MRP4 confers resistance to ganciclovir and compromises bystander cell killing. J Biol Chem 277:38998–39004

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from Novartis Pharma AG, Lichtstrasse 35, Basel, Switzerland. The authors would like to thank John Schuetz for providing the Saos-2 MRP4 transfectants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric H. Rubin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gounder, M.K., Nazar, A.S., Saleem, A. et al. Effects of drug efflux proteins and topoisomerase I mutations on the camptothecin analogue gimatecan. Invest New Drugs 26, 205–213 (2008). https://doi.org/10.1007/s10637-007-9093-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-007-9093-0

Keywords

Navigation