Skip to main content

Advertisement

Log in

Phenolic Compounds Promote Diversity of Gut Microbiota and Maintain Colonic Health

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

The role of non-energy-yielding nutrients on health has been meticulously studied, and the evidence shows that a compound can exert significant effects on health even if not strictly required by the organism. Phenolic compounds are among the most widely studied molecules that fit this description; they are found in plants as secondary metabolites and are not required by humans for growth or development, but they can influence a wide array of processes that modulate health across multiple organs and systems. The lower gastrointestinal tract is a prime site of action of phenolic compounds, namely, by their effects on gut microbiota and colonic health. As with humans, phenolic compounds are not required by most bacteria but can be substrates of others; in fact, some phenolic compounds exert antibacterial actions. A diet rich in phenolic compounds can lead to qualitative and quantitative effects on gut microbiota, thereby inducing indirect health effects in mammals through the action of these microorganisms. Moreover, phenolic compounds may be fermented by the gut microbiota, thereby modulating the compounds bioactivity. In the colon, phenolic compounds promote anti-inflammatory, anti-oxidant and antiproliferative actions. The aim of the present review is to highlight the role of phenolic compounds on maintaining or restoring a healthy microbiota and overall colonic health. Mechanisms of action that substantiate the reported evidence will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Perez-Munoz ME, Arrieta MC, Ramer-Tait AE, Walter J. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome. 2017;5:1–19.

    Article  Google Scholar 

  2. King CH, Desai H, Sylvetsky AC, et al. Baseline human gut microbiota profile in healthy people and standard reporting template. PLoS ONE. 2019;14:1–25.

    Google Scholar 

  3. Neuman H, Forsythe P, Uzan A, Avni O, Koren O. Antibiotics in early life: dysbiosis and the damage done. FEMS Microbiol Rev. 2018;42:489–499.

    CAS  PubMed  Google Scholar 

  4. Cox LM, Yamanishi S, Sohn J, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014;158:705–721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Azad MB, Konya T, Persaud RR, et al. Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study. Bjog-Int J Obstet Gy. 2016;123:983–993.

    Article  CAS  Google Scholar 

  6. Reijnders D, Goossens GH, Hermes GDA, et al. Effects of gut microbiota manipulation by antibiotics on host metabolism in obese humans: a randomized double-blind placebo-controlled trial. Cell Metab. 2016;24:341.

    Article  CAS  PubMed  Google Scholar 

  7. Karl JP, Margolis LM, Madslien EH, et al. Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress. Am J Physiol-Gastr L. 2017;312:G559–G571.

    Google Scholar 

  8. Partrick KA, Chassaing B, Beach LQ, et al. Acute and repeated exposure to social stress reduces gut microbiota diversity in Syrian hamsters. Behav Brain Res. 2018;348:277.

    Article  PubMed  Google Scholar 

  9. Crumeyrolle-Arias M, Jaglin M, Bruneau A, et al. Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology. 2014;42:207–217.

    Article  CAS  PubMed  Google Scholar 

  10. Desbonnet L, Clarke G, Traplin A, et al. Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour. Brain Behav Immun. 2015;48:165–173.

    Article  CAS  PubMed  Google Scholar 

  11. Zijlmans MAC, Korpela K, Riksen-Walraven JM, de Vos WM, de Weerth C. Maternal prenatal stress is associated with the infant intestinal microbiota. Psychoneuroendocrinology. 2015;53:233–245.

    Article  PubMed  Google Scholar 

  12. Golubeva AV, Crampton S, Desbonnet L, et al. Prenatal stress-induced alterations in major physiological systems correlate with gut microbiota composition in adulthood. Psychoneuroendocrinology. 2015;60:58–74.

    Article  PubMed  Google Scholar 

  13. Naseribafrouei A, Hestad K, Avershina E, et al. Correlation between the human fecal microbiota and depression. Neurogastroent Motil. 2014;26:1155–1162.

    Article  CAS  Google Scholar 

  14. Kelly JR, Borre Y, Brien CO, et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res. 2016;82:109–118.

    Article  PubMed  Google Scholar 

  15. Burokas A, Arboleya S, Moloney RD, et al. Targeting the microbiota-gut-brain axis: prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biol Psychiat. 2017;82:472–487.

    Article  CAS  PubMed  Google Scholar 

  16. Scher JU, Ubeda C, Artacho A, et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 2015;67:128–139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xiao SM, Fei N, Pang XY, et al. A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome. FEMS Microbiol Ecol. 2014;87:357–367.

    Article  CAS  PubMed  Google Scholar 

  18. Schaubeck M, Clavel T, Calasan J, et al. Dysbiotic gut microbiota causes transmissible Crohn’s disease-like ileitis independent of failure in antimicrobial defence. Gut. 2016;65:225–237.

    Article  CAS  PubMed  Google Scholar 

  19. Collins KH, Paul HA, Reimer RA, et al. Relationship between inflammation, the gut microbiota, and metabolic osteoarthritis development: studies in a rat model. Osteoarthr Cartilage. 2015;23:1989–1998.

    Article  CAS  Google Scholar 

  20. Xue L, He JT, Gao N, et al. Probiotics may delay the progression of nonalcoholic fatty liver disease by restoring the gut microbiota structure and improving intestinal endotoxemia. Sci Rep. 2017;7:45176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Poroyko VA, Carreras A, Khalyfa A, et al. Chronic sleep disruption alters gut microbiota, induces systemic and adipose tissue inflammation and insulin resistance in mice. Sci Rep. 2016;6:1–11.

    Article  CAS  Google Scholar 

  22. Santos-Marcos JA, Rangel-Zuñiga OA, Jimenez-Lucena R, et al. Influence of gender and menopausal status on gut microbiota. Maturitas. 2018;116:43–53.

    Article  PubMed  Google Scholar 

  23. Kopf JC, Suhr MJ, Clarke J, et al. Role of whole grains versus fruits and vegetables in reducing subclinical inflammation and promoting gastrointestinal health in individuals affected by overweight and obesity: a randomized controlled trial. Nutr J. 2018;17:1–13.

    Article  CAS  Google Scholar 

  24. Berding K, Donovan S. Impact of long-term dietary patterns and short-term nutrient intake on the gut microbiota of children 4 to 8 years of age. FASEB J. 2017;31:165–174.

    Article  Google Scholar 

  25. Bajaj JS, Idilman R, Mabudian L, et al. Diet affects gut microbiota and modulates hospitalization risk differentially in an international cirrhosis cohort. Hepatology. 2018;68:234–247.

    Article  CAS  PubMed  Google Scholar 

  26. De Filippis F, Pellegrini N, Vannini L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016;65:1812–1821.

    Article  PubMed  CAS  Google Scholar 

  27. Harrison CA, Taren D. How poverty affects diet to shape the microbiota and chronic disease. Nat Rev Immunol. 2018;18:279–287.

    Article  CAS  PubMed  Google Scholar 

  28. Ozdal T, Sela DA, Xiao JB, et al. The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients. 2016;8:1–36.

    Article  CAS  Google Scholar 

  29. Klinder A, Shen Q, Heppel S, et al. Impact of increasing fruit and vegetables and flavonoid intake on the human gut microbiota. Food Funct. 2016;7:1788–1796.

    Article  CAS  PubMed  Google Scholar 

  30. Ercolini D, Fogliano V. Food design to feed the human gut microbiota. J Agric Food Chem. 2018;66:3754–3758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Denou E, Marcinko K, Surette MG, Steinberg GR, Schertzer JD. High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity. Am J Physiol Endocrinol Metab. 2016;310:E982–E993.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Evans CC, LePard KJ, Kwak JW, et al. Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLoS ONE. 2014;9:1–14.

    Google Scholar 

  33. Lambert JE, Myslicki JP, Bomhof MR, et al. Exercise training modifies gut microbiota in normal and diabetic mice. Appl Physiol Nutr Metab. 2015;40:749–752.

    Article  PubMed  Google Scholar 

  34. Petriz BA, Castro AP, Almeida JA, et al. Exercise induction of gut microbiota modifications in obese, non-obese and hypertensive rats. BMC Genom. 2014;15:1–13.

    Article  Google Scholar 

  35. Allen JM, Mailing LJ, Niemiro GM, et al. Exercise alters gut microbiota composition and function in lean and obese humans. Med Sci Sport Exerc. 2018;50:747–757.

    Article  Google Scholar 

  36. Nieman DC, Kay CD, Rathore AS, et al. Increased plasma levels of gut-derived phenolics linked to walking and running following two weeks of flavonoid supplementation. Nutrients. 2018;10:1–14.

    Article  CAS  Google Scholar 

  37. Durk RP, Castillo E, Márquez-Magaña L, et al. Gut microbiota composition is related to cardiorespiratory fitness in healthy young adults. Int J Sport Nutr Exerc Metabol. 2019;29:249–253.

    Article  CAS  Google Scholar 

  38. Paulsen JA, Ptacek TS, Carter SJ, et al. Gut microbiota composition associated with alterations in cardiorespiratory fitness and psychosocial outcomes among breast cancer survivors. Support Care Cancer. 2017;25:1563–1570.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bajaj JS, Kakiyama G, Savidge T, et al. Antibiotic-associated disruption of microbiota composition and function in cirrhosis is restored by fecal transplant. Hepatology. 2018;68:1549–1558.

    Article  CAS  PubMed  Google Scholar 

  40. Park H, Laffin MR, Jovel J, et al. The success of fecal microbial transplantation in Clostridium difficile infection correlates with bacteriophage relative abundance in the donor: a retrospective cohort study. Gut Microbes. 2019;10:676–687.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rebello D, Wang E, Yen E, Lio PA, Kelly CR. Hair growth in two alopecia patients after fecal microbiota transplant. ACG Case Rep J. 2017;4:1–3.

    Article  Google Scholar 

  42. Zhou D, Pan Q, Shen F, et al. Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota. Sci Rep. 2017;7:1–11.

    Article  CAS  Google Scholar 

  43. Le Bastard Q, Ward T, Sidiropoulos D, et al. Fecal microbiota transplantation reverses antibiotic and chemotherapy-induced gut dysbiosis in mice. Sci Rep. 2018;8:1–11.

    CAS  Google Scholar 

  44. Kootte RS, Levin E, Salojarvi J, et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 2017;26:611–619.

    Article  CAS  PubMed  Google Scholar 

  45. Kang D-W, Adams JB, Coleman DM, et al. Long-term benefit of microbiota transfer therapy on autism symptoms and gut microbiota. Sci Rep. 2019;9:5821.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Cassidy A, Minihane A-M. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am J Clin Nutr. 2016;105:10–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Siddiqui MW, Ayala-Zavala JF, González-Aguilar G. Plant tissues as a source of nutraceutical compounds: fruit seeds, leaves, flowers, and stems. Plant food by-products. Palm Bay: Apple Academic; 2018:97–148.

    Google Scholar 

  48. Poole R, Ewings S, Parkes J, Fallowfield JA, Roderick P. Misclassification of coffee consumption data and the development of a standardised coffee unit measure. BMJ. 2019;2:11–19.

  49. Martini D, Del Bo C, Tassotti M, et al. Coffee consumption and oxidative stress: a review of human intervention studies. Molecules. 2016;21:979.

    Article  PubMed Central  CAS  Google Scholar 

  50. Lafay S, Gil-Izquierdo A, Manach C, et al. Chlorogenic acid is absorbed in its intact form in the stomach of rats. J Nutr. 2006;136:1192–1197.

    Article  CAS  PubMed  Google Scholar 

  51. Mills CE, Tzounis X, Oruna-Concha M-J, et al. In vitro colonic metabolism of coffee and chlorogenic acid results in selective changes in human faecal microbiota growth. Br J Nutr. 2015;113:1220–1227.

    Article  CAS  PubMed  Google Scholar 

  52. González S, Salazar N, Ruiz-Saavedra S, et al. Long-term coffee consumption is associated with fecal microbial composition in humans. Nutrients. 2020;12:1287.

    Article  PubMed Central  CAS  Google Scholar 

  53. Perez-Burillo S, Mehta T, Esteban-Munoz A, et al. Effect of in vitro digestion-fermentation on green and roasted coffee bioactivity: the role of the gut microbiota. Food Chem. 2019;279:252–259.

    Article  CAS  PubMed  Google Scholar 

  54. Bhagat AR, Delgado AM, Issaoui M, et al. Review of the role of fluid dairy in delivery of polyphenolic compounds in the diet: chocolate milk, coffee beverages, matcha green tea, and beyond. J AOAC Int. 2019;102:1365–1372.

    Article  CAS  PubMed  Google Scholar 

  55. Wang L, Zhang X, Liu J, Shen L, Li Z. Tea consumption and lung cancer risk: a meta-analysis of case–control and cohort studies. Nutrition. 2014;30:1122–1127.

    Article  CAS  PubMed  Google Scholar 

  56. Pyrzynska K, Sentkowska A. 5—Herbal beverages as a source of antioxidant phenolics. In: Grumezescu AM, Holban AM, eds. Natural beverages. Cambridge: Academic; 2019:125–142.

    Chapter  Google Scholar 

  57. Wakamatsu M, Yamanouchi H, Sahara H, et al. Catechin and caffeine contents in green tea at different harvest periods and their metabolism in miniature swine. Food Sci Nutr. 2019;7:2769–2778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yang Y, Qiao L, Zhang X, Wu Z, Weng P. Effect of methylated tea catechins from Chinese oolong tea on the proliferation and differentiation of 3T3-L1 preadipocyte. Fitoterapia. 2015;104:45–49.

    Article  CAS  PubMed  Google Scholar 

  59. Cheng M, Zhang X, Zhu J, et al. A metagenomics approach to the intestinal microbiome structure and function in high fat diet-induced obesity mice fed with oolong tea polyphenols. Food Funct. 2018;9:1079–1087.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang X, Zhu X, Sun Y, et al. Fermentation in vitro of EGCG, GCG and EGCG3″ Me isolated from Oolong tea by human intestinal microbiota. Food Res Int. 2013;54:1589–1595.

    Article  CAS  Google Scholar 

  61. Chen H, Sang S. Biotransformation of tea polyphenols by gut microbiota. J Funct Foods. 2014;7:26–42.

    Article  CAS  Google Scholar 

  62. Jung ES, Park JI, Park H, et al. Seven-day green tea supplementation revamps gut microbiome and caecum/skin metabolome in mice from stress. Sci Rep. 2019;9:18418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Guo T, Song D, Cheng L, Zhang X. Interactions of tea catechins with intestinal microbiota and their implication for human health. Food Sci Biotechnol. 2019;28:1617–1625.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Chen T, Yang CS. Biological fates of tea polyphenols and their interactions with microbiota in the gastrointestinal tract: implications on health effects. Crit Rev Food Sci Nutr. 2020;60:2691–2709.

    Article  CAS  PubMed  Google Scholar 

  65. Chiva-Blanch G, Arranz S, Lamuela-Raventos RM, Estruch R. Effects of wine, alcohol and polyphenols on cardiovascular disease risk factors: evidences from human studies. Alcohol Alcohol. 2013;48:270–277.

    Article  CAS  PubMed  Google Scholar 

  66. Moreno-Indias I, Sánchez-Alcoholado L, Pérez-Martínez P, et al. Red wine polyphenols modulate fecal microbiota and reduce markers of the metabolic syndrome in obese patients. Food Funct. 2016;7:1775–1787.

    Article  PubMed  CAS  Google Scholar 

  67. Artero A, Artero A, Tarín JJ, Cano A. The impact of moderate wine consumption on health. Maturitas. 2015;80:3–13.

    Article  CAS  PubMed  Google Scholar 

  68. Dueñas M, Cueva C, Muñoz-González I, et al. Studies on modulation of gut microbiota by wine polyphenols: from isolated cultures to omic approaches. Antioxidants. 2015;4:1–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Queipo-Ortuño MI, Boto-Ordóñez M, Murri M, et al. Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am J Clin Nutr. 2012;95:1323–1334.

    Article  PubMed  CAS  Google Scholar 

  70. Sun H, Zhang P, Zhu Y, Lou Q, He S. Antioxidant and prebiotic activity of five peonidin-based anthocyanins extracted from purple sweet potato (Ipomoea batatas (L.) Lam). Sci Rep. 2018;8:5018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Tian L, Tan Y, Chen G, et al. Metabolism of anthocyanins and consequent effects on the gut microbiota. Crit Rev Food Sci Nutr. 2019;59:982–991.

    Article  CAS  PubMed  Google Scholar 

  72. Sun X, Cheng X, Zhang J, et al. Letting wine polyphenols functional: estimation of wine polyphenols bioaccessibility under different drinking amount and drinking patterns. Food Res Int. 2020;127:108704.

    Article  CAS  PubMed  Google Scholar 

  73. Zorraquín-Peña I, Esteban-Fernández A, González de Llano D, Bartolomé B, Moreno-Arribas MV. Wine-derived phenolic metabolites in the digestive and brain function. Beverages. 2019;5:7.

    Article  CAS  Google Scholar 

  74. Zhou N, Gu X, Zhuang T, et al. Gut microbiota: a pivotal hub for polyphenols as antidepressants. J Agric Food Chem. 2020;68:6007–6020.

    Article  CAS  PubMed  Google Scholar 

  75. KumarSingh A, Cabral C, Kumar R, et al. Beneficial effects of dietary polyphenols on gut microbiota and strategies to improve delivery efficiency. Nutrients. 2019;11:2216.

    Article  CAS  Google Scholar 

  76. Zorraquin I, Sanchez-Hernandez E, Ayuda-Duran B, et al. Current and future experimental approaches in the study of grape and wine polyphenols interacting gut microbiota. J Sci Food Agric. 2020;100:3789–3802.

    Article  CAS  PubMed  Google Scholar 

  77. Stinco CM, Fernández-Vázquez R, Hernanz D, et al. Industrial orange juice debittering: impact on bioactive compounds and nutritional value. J Food Eng. 2013;116:155–161.

    Article  CAS  Google Scholar 

  78. Pereira-Caro G, Borges G, Ky I, et al. In vitro colonic catabolism of orange juice (poly) phenols. Mol Nutr Food Res. 2015;59:465–475.

    Article  CAS  PubMed  Google Scholar 

  79. Brasili E, Hassimotto NMA, Del Chierico F, et al. Daily consumption of orange juice from Citrus sinensis L. Osbeck cv. Cara Cara and cv. Bahia differently affects Gut Microbiota Profiling as unveiled by an integrated meta-omics approach. J Agric Food Chem. 2019;67:1381–1391.

    Article  CAS  PubMed  Google Scholar 

  80. Duque ALRF, Monteiro M, Adorno MAT, Sakamoto IK, Sivieri K. An exploratory study on the influence of orange juice on gut microbiota using a dynamic colonic model. Food Res Int. 2016;84:160–169.

    Article  CAS  Google Scholar 

  81. Lima ACD, Cecatti C, Fidelix MP, et al. Effect of daily consumption of orange juice on the levels of blood glucose, lipids, and gut microbiota metabolites: controlled clinical trials. J Med Food. 2019;22:202–210.

    Article  CAS  PubMed  Google Scholar 

  82. Tomas-Barberan FA, Espin JC. Effect of food structure and processing on (poly)phenol-gut microbiota interactions and the effects on human health. Annu Rev Food Sci Technol. 2019;10:221–238.

    Article  CAS  PubMed  Google Scholar 

  83. Wall-Medrano A, Olivas-Aguirre FJ, Ayala-Zavala JF, et al. Health benefits of mango by-products. Food wastes and by-products. New York: Wiley; 2020:159–191.

    Book  Google Scholar 

  84. Low DY, Hodson MP, Williams BA, D’Arcy BR, Gidley MJ. Microbial biotransformation of polyphenols during in vitro colonic fermentation of masticated mango and banana. Food Chem. 2016;207:214–222.

    Article  CAS  PubMed  Google Scholar 

  85. Sáyago-Ayerdi SG, Zamora-Gasga VM, Venema K. Prebiotic effect of predigested mango peel on gut microbiota assessed in a dynamic in vitro model of the human colon (TIM-2). Food Res Int. 2017;118:89–95.

    Article  PubMed  CAS  Google Scholar 

  86. Pacheco-Ordaz R, Antunes-Ricardo M, Gutierrez-Uribe JA, Gonzalez-Aguilar GA. Intestinal permeability and cellular antioxidant activity of phenolic compounds from mango (Mangifera indica cv. Ataulfo) peels. Int J Mol Sci. 2018;19:1–15.

    Article  CAS  Google Scholar 

  87. Pacheco-Ordaz R, Wall-Medrano A, Goni MG, et al. Effect of phenolic compounds on the growth of selected probiotic and pathogenic bacteria. Lett Appl Microbiol. 2018;66:25–31.

    Article  CAS  PubMed  Google Scholar 

  88. Kim H, Venancio VP, Fang C, et al. Mango (Mangifera indica L.) polyphenols reduce IL-8, GRO, and GM-SCF plasma levels and increase Lactobacillus species in a pilot study in patients with inflammatory bowel disease. Nutr Res. 2020;75:85–94.

    Article  CAS  PubMed  Google Scholar 

  89. Sayago-Ayerdi SG, Zamora-Gasga VM, Venema K. Prebiotic effect of predigested mango peel on gut microbiota assessed in a dynamic in vitro model of the human colon (TIM-2). Food Res Int. 2019;118:89–95.

    Article  CAS  PubMed  Google Scholar 

  90. Gutierrez-Sarmiento W, Sayago-Ayerdi SG, Goni I, et al. Changes in intestinal microbiota and predicted metabolic pathways during colonic fermentation of mango (Mangifera indica L.)-based bar indigestible fraction. Nutrients. 2020;12:683.

    Article  CAS  PubMed Central  Google Scholar 

  91. Malik A, Mukhtar H. Prostate cancer prevention through pomegranate fruit. Cell Cycle. 2006;5:371–373.

    Article  CAS  PubMed  Google Scholar 

  92. Gil MI, Tomás-Barberán FA, Hess-Pierce B, Holcroft DM, Kader AA. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J Agric Food Chem. 2000;48:4581–4589.

    Article  CAS  PubMed  Google Scholar 

  93. Basu A, Penugonda K. Pomegranate juice: a heart-healthy fruit juice. Nutr Rev. 2009;67:49–56.

    Article  PubMed  Google Scholar 

  94. Li Z, Summanen PH, Komoriya T, et al. Pomegranate ellagitannins stimulate growth of gut bacteria in vitro: implications for prebiotic and metabolic effects. Anaerobe. 2015;34:164–168.

    Article  PubMed  CAS  Google Scholar 

  95. González-Sarrías A, García-Villalba R, Romo-Vaquero M, et al. Clustering according to urolithin metabotype explains the interindividual variability in the improvement of cardiovascular risk biomarkers in overweight-obese individuals consuming pomegranate: a randomized clinical trial. Mol Nutr Food Res. 2017;61:1600830.

    Article  CAS  Google Scholar 

  96. Zhang S, Yang J, Henning SM, et al. Modulation of gut microbiota by dietary pomegranate extract and inulin in mice fed an obesogenic diet. FASEB J. 2017;31:965.30-.30.

    Google Scholar 

  97. Kandylis P, Kokkinomagoulos E. Food applications and potential health benefits of pomegranate and its derivatives. Foods. 2020;9:122.

    Article  CAS  PubMed Central  Google Scholar 

  98. Loo YT, Howell K, Chan M, Zhang P, Ng K. Modulation of the human gut microbiota by phenolics and phenolic fiber-rich foods. Compr Rev Food Sci Food Saf. 2020;19:1268–1298.

    Article  CAS  PubMed  Google Scholar 

  99. Castello F, Costabile G, Bresciani L, et al. Bioavailability and pharmacokinetic profile of grape pomace phenolic compounds in humans. Arch Biochem Biophys. 2018;646:1–9.

    Article  CAS  PubMed  Google Scholar 

  100. Fernández-Ochoa Á, Cázares-Camacho R, Borrás-Linares I, et al. Evaluation of metabolic changes in liver and serum of streptozotocin-induced diabetic rats after mango diet supplementation. J Funct Foods.. 2020;64:103695.

    Article  CAS  Google Scholar 

  101. Marhuenda-Muñoz M, Laveriano-Santos EP, Tresserra-Rimbau A, et al. Microbial phenolic metabolites: which molecules actually have an effect on human health? Nutrients.. 2019;11:2725.

    Article  PubMed Central  CAS  Google Scholar 

  102. Motilva M-J, Macià A, Romero M-P, et al. Human bioavailability and metabolism of phenolic compounds from red wine enriched with free or nano-encapsulated phenolic extract. J Funct Foods. 2016;25:80–93.

    Article  CAS  Google Scholar 

  103. de Souza EL, de Albuquerque TMR, Dos Santos AS, Massa NML, de Brito Alves JL. Potential interactions among phenolic compounds and probiotics for mutual boosting of their health-promoting properties and food functionalities–a review. Crit Rev Food Sci Nutr. 2019;59:1645–1659.

    Article  PubMed  CAS  Google Scholar 

  104. Nile SH, Park SW. Edible berries: bioactive components and their effect on human health. Nutrition. 2014;30:134–144.

    Article  CAS  PubMed  Google Scholar 

  105. Van Dorsten F, Peters S, Gross G, et al. Gut microbial metabolism of polyphenols from black tea and red wine/grape juice is source-specific and colon-region dependent. J Agric Food Chem. 2012;60:11331–11342.

    Article  PubMed  CAS  Google Scholar 

  106. Su H, Xie L, Xu Y et al. Pelargonidin-3-O-glucoside derived from wild raspberry exerts antihyperglycemic effect by inducing autophagy and modulating gut microbiota. J Agric Food Chem. 2019. https://doi.org/10.1021/acs.jafc.9b03338.

  107. Lavefve L, Howard LR, Carbonero F. Berry polyphenols metabolism and impact on human gut microbiota and health. Food Funct. 2020;11:45–65.

    Article  CAS  PubMed  Google Scholar 

  108. Garcia-Villalba R, Vissenaekens H, Pitart J, et al. Gastrointestinal simulation model TWIN-SHIME shows differences between human urolithin-metabotypes in gut microbiota composition, pomegranate polyphenol metabolism, and transport along the intestinal tract. J Agric Food Chem. 2017;65:5480–5493.

    Article  CAS  PubMed  Google Scholar 

  109. Alqurashi RM, Alarifi SN, Walton GE, et al. In vitro approaches to assess the effects of acai (Euterpe oleracea) digestion on polyphenol availability and the subsequent impact on the faecal microbiota. Food Chem. 2017;234:190–198.

    Article  CAS  PubMed  Google Scholar 

  110. Zhou L, Wang W, Huang J, et al. In vitro extraction and fermentation of polyphenols from grape seeds (Vitis vinifera) by human intestinal microbiota. Food Funct. 2016;7:1959–1967.

    Article  CAS  PubMed  Google Scholar 

  111. Gil-Sanchez I, Cueva C, Sanz-Buenhombre M, et al. Dynamic gastrointestinal digestion of grape pomace extracts: bioaccessible phenolic metabolites and impact on human gut microbiota. J Food Compos Anal. 2018;68:41–52.

    Article  CAS  Google Scholar 

  112. Anhê FF, Roy D, Pilon G, et al. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut. 2015;64:872–883.

    Article  PubMed  CAS  Google Scholar 

  113. Henning SM, Yang JP, Hsu M, et al. Decaffeinated green and black tea polyphenols decrease weight gain and alter microbiome populations and function in diet-induced obese mice. Eur J Nutr. 2018;57:2759–2769.

    Article  CAS  PubMed  Google Scholar 

  114. Caro-Gomez E, Sierra JA, Escobar JS, et al. Green coffee extract improves cardiometabolic parameters and modulates gut microbiota in high-fat-diet-fed ApoE(−/−) mice. Nutrients. 2019;11:1–22.

    Article  CAS  Google Scholar 

  115. Zhang L, Carmody RN, Kalariya HM, et al. Grape proanthocyanidin-induced intestinal bloom of Akkermansia muciniphila is dependent on its baseline abundance and precedes activation of host genes related to metabolic health. J Nutr Biochem. 2018;56:142–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Anhe FF, Nachbar RT, Varin TV, et al. Treatment with camu camu (Myrciaria dubia) prevents obesity by altering the gut microbiota and increasing energy expenditure in diet-induced obese mice. Gut. 2019;68:453–464.

    Article  CAS  PubMed  Google Scholar 

  117. Jiao XY, Wang YH, Lin Y, et al. Blueberry polyphenols extract as a potential prebiotic with anti-obesity effects on C57BL/6J mice by modulating the gut microbiota. J Nutr Biochem. 2019;64:88–100.

    Article  CAS  PubMed  Google Scholar 

  118. Most J, Penders J, Lucchesi M, Goossens GH, Blaak EE. Gut microbiota composition in relation to the metabolic response to 12-week combined polyphenol supplementation in overweight men and women. Eur J Clin Nutr. 2017;71:1040–1045.

    Article  CAS  PubMed  Google Scholar 

  119. Mayta-Apaza AC, Pottgen E, De Bodt J, et al. Impact of tart cherries polyphenols on the human gut microbiota and phenolic metabolites in vitro and in vivo. J Nutr Biochem. 2018;59:160–172.

    Article  CAS  PubMed  Google Scholar 

  120. Silva FGDE, Paiatto LN, Yamada AT, et al. Intake of protein hydrolysates and phenolic fractions isolated from flaxseed ameliorates TNBS-induced colitis. Mol Nutr Food Res. 2018;62:e1800088.

    Article  CAS  Google Scholar 

  121. Direito R, Lima A, Rocha J, et al. Dyospiros kaki phenolics inhibit colitis and colon cancer cell proliferation, but not gelatinase activities. J Nutr Biochem. 2017;46:100–108.

    Article  CAS  PubMed  Google Scholar 

  122. Valcheva-Kuzmanova S, Kuzmanov A, Kuzmanova V, Tzaneva M. Aronia melanocarpa fruit juice ameliorates the symptoms of inflammatory bowel disease in TNBS-induced colitis in rats. Food Chem Toxicol. 2018;113:33–39.

    Article  CAS  PubMed  Google Scholar 

  123. Sartor RB. How relevant to human inflammatory bowel disease are current animal models of intestinal inflammation? Aliment Pharmacol Therap. 1997;11:89–96.

    Article  Google Scholar 

  124. Koh S-J, Choi Y-I, Kim Y, et al. Walnut phenolic extract inhibits nuclear factor kappaB signaling in intestinal epithelial cells, and ameliorates experimental colitis and colitis-associated colon cancer in mice. Eur J Nutr. 2018;58:1603–1613.

    Article  PubMed  CAS  Google Scholar 

  125. Martin DA, Smyth JA, Liu ZH, Bolling BW. Aronia berry (Aronia mitschurinii ‘Viking’) inhibits colitis in mice and inhibits T cell tumour necrosis factor-alpha secretion. J Funct Foods. 2018;44:48–57.

    Article  CAS  Google Scholar 

  126. Xiao X, Kim J, Sun QC, et al. Preventive effects of cranberry products on experimental colitis induced by dextran sulphate sodium in mice. Food Chem. 2015;167:438–446.

    Article  CAS  PubMed  Google Scholar 

  127. Monk JM, Lepp D, Zhang CP, et al. Diets enriched with cranberry beans alter the microbiota and mitigate colitis severity and associated inflammation. J Nutr Biochem. 2016;28:129–139.

    Article  CAS  PubMed  Google Scholar 

  128. Kim H, Krenek KA, Fang C, et al. Polyphenolic derivatives from mango (Mangifera indica L.) modulate fecal microbiome, short-chain fatty acids production and the HDAC1/AMPK/LC3 axis in rats with DSS-induced colitis. J Funct Foods. 2018;48:243–251.

    Article  CAS  Google Scholar 

  129. Kim JE, Lee MR, Park JJ, et al. Quercetin promotes gastrointestinal motility and mucin secretion in loperamide-induced constipation of SD rats through regulation of the mAChRs downstream signal. Pharm Biol. 2018;56:309–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Salaritabar A, Darvishi B, Hadjiakhoondi F, et al. Therapeutic potential of flavonoids in inflammatory bowel disease: a comprehensive review. World J Gastroenterol. 2017;23:5097–5114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kuhn P, Kalariya HM, Poulev A, et al. Grape polyphenols reduce gut-localized reactive oxygen species associated with the development of metabolic syndrome in mice. PLoS ONE. 2018;13:1–14.

    Google Scholar 

  132. Tamas K, Walenkamp AME, De Vries EGE, et al. Rectal and colon cancer: not just a different anatomic site. Cancer Treat Rev. 2015;41:671–679.

    Article  CAS  PubMed  Google Scholar 

  133. Hashemzaei M, Far AD, Yari A, et al. Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo. Oncol Rep. 2017;38:819–828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. El Halabi I, Bejjany R, Nasr R, et al. Ascorbic acid in colon cancer: from the basic to the clinical applications. Int J Mol Sci. 2018;19:1–13.

    Article  CAS  Google Scholar 

  135. Guven B, Can M, Piskin O, et al. Flavonoids protect colon against radiation induced colitis. Reg Toxicol Pharmacol. 2019;104:128–132.

    Article  CAS  Google Scholar 

  136. Karki R, Man SM, Kanneganti TD. Inflammasomes and cancer. Cancer Immunol Res. 2017;5:94–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lee KM, Kang JH, Yun M, Lee SB. Quercetin inhibits the poly(dA:dT)-induced secretion of IL-18 via down-regulation of the expressions of AIM2 and pro-caspase-1 by inhibiting the JAK2/STAT1 pathway in IFN-gamma-primed human keratinocytes. Biochem Bioph Res Commun. 2018;503:116–122.

    Article  CAS  Google Scholar 

  138. Razak S, Afsar T, Ullah A, et al. Taxifolin, a natural flavonoid interacts with cell cycle regulators causes cell cycle arrest and causes tumor regression by activating Wnt/beta-catenin signaling pathway. BMC Cancer. 2018;18:1–18.

    Article  CAS  Google Scholar 

  139. Biswas S, Reddy ND, Jayashree BS, Rao CM. Evaluation of novel 3-hydroxyflavone analogues as HDAC Inhibitors against colorectal cancer. Adv Pharmacol Sci. 2018;2018:1–14.

    Google Scholar 

  140. Day AJ, Gee JM, DuPont MS, Johnson IT, Williamson G. Absorption of quercetin-3-glucoside and quercetin-4’-glucoside in the rat small intestine: the role of lactase phlorizin hydrolase and the sodium-dependent glucose transporter. Biochem Pharmacol. 2003;65:1199–1206.

    Article  CAS  PubMed  Google Scholar 

  141. Jaganath IB, Mullen W, Edwards CA, Crozier A. The relative contribution of the small and large intestine to the absorption and metabolism of rutin in man. Free Radical Res. 2006;40:1035–1046.

    Article  CAS  Google Scholar 

  142. Kahle K, Huemmer W, Kempf M, et al. Polyphenols are intensively metabolized in the human gastrointestinal tract after apple juice consumption. J Agric Food Chem. 2007;55:10605–10614.

    Article  CAS  PubMed  Google Scholar 

  143. Attri S, Goel G. Influence of polyphenol rich seabuckthorn berries juice on release of polyphenols and colonic microbiota on exposure to simulated human digestion model. Food Res Int. 2018;111:314–323.

    Article  CAS  PubMed  Google Scholar 

  144. Sang SM, Lambert JD, Ho CT, Yang CS. The chemistry and biotransformation of tea constituents. Pharmacol Res. 2011;64:87–99.

    Article  CAS  PubMed  Google Scholar 

  145. Cani PD. Gut microbiota—at the intersection of everything? Nat Rev Gastroenterol Hepatol. 2017;14:321–322.

    Article  PubMed  Google Scholar 

  146. Gil-Cardoso K, Ginés I, Pinent M, et al. Effects of flavonoids on intestinal inflammation, barrier integrity and changes in gut microbiota during diet-induced obesity. Nutr Res Rev. 2016;29:234–248.

    Article  CAS  PubMed  Google Scholar 

  147. Roopchand DE, Carmody RN, Kuhn P, et al. Dietary polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high fat diet-induced metabolic syndrome. Diabetes. 2015;64:2847–2858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Anhê FF, Varin TV, Le Barz M, et al. Arctic berry extracts target the gut–liver axis to alleviate metabolic endotoxaemia, insulin resistance and hepatic steatosis in diet-induced obese mice. Diabetologia. 2018;61:919–931.

    Article  PubMed  CAS  Google Scholar 

  149. Fujisaka S, Usui I, Nawaz A, et al. Bofutsushosan improves gut barrier function with a bloom of Akkermansia muciniphila and improves glucose metabolism in mice with diet-induced obesity. Sci Rep. 2020;10:5544.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Rodríguez-Daza M-C, Daoust L, Boutkrabt L, et al. Wild blueberry proanthocyanidins shape distinct gut microbiota profile and influence glucose homeostasis and intestinal phenotypes in high-fat high-sucrose fed mice. Sci Rep. 2020;10:2217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Plovier H, Everard A, Druart C, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med. 2017;23:107–113.

    Article  CAS  PubMed  Google Scholar 

  152. Chelakkot C, Choi Y, Kim D-K, et al. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp Mol Med. 2018;50:1–11.

    Article  CAS  PubMed  Google Scholar 

  153. Espín JC, González-Sarrías A, Tomás-Barberán FA. The gut microbiota: a key factor in the therapeutic effects of (poly) phenols. Biochem Pharmacol. 2017;139:82–93.

    Article  PubMed  CAS  Google Scholar 

  154. Radulovic K, Normand S, Rehman A, et al. A dietary flavone confers communicable protection against colitis through NLRP6 signaling independently of inflammasome activation. Mucosal Immunol. 2018;11:811–819.

    Article  CAS  PubMed  Google Scholar 

  155. Wang L, Fouts DE, Stärkel P, et al. Intestinal REG3 lectins protect against alcoholic steatohepatitis by reducing mucosa-associated microbiota and preventing bacterial translocation. Cell Host Microbe. 2016;19:227–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Levy M, Shapiro H, Thaiss CA, Elinav E. NLRP6: a multifaceted innate immune sensor. Trends Immunol. 2017;38:248–260.

    Article  CAS  PubMed  Google Scholar 

  157. Dmitrieva-Posocco O, Dzutsev A, Posocco DF, et al. Cell-type-specific responses to interleukin-1 control microbial invasion and tumor-elicited inflammation in colorectal cancer. Immunity. 2019;50:166–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Sugihara K, Morhardt TL, Kamada N. the role of dietary nutrients in inflammatory bowel disease. Front Immunol. 2018;9:1–16.

    Article  CAS  Google Scholar 

  159. Calle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer. 2004;4:579–591.

    Article  CAS  PubMed  Google Scholar 

  160. Beyaz S, Mana MD, Roper J, et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature. 2016;531:53–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Bessac A, Cani PD, Meunier E, Dietrich G, Knauf C. Inflammation and gut-brain axis during type 2 diabetes: focus on the crosstalk between intestinal immune cells and enteric nervous system. Front Neurosci. 2018;12:1–9.

    Article  Google Scholar 

  162. Wells JM, Brummer RJ, Derrien M, et al. Homeostasis of the gut barrier and potential biomarkers. Am J Physiol Gastr Liver Physiol. 2016;312:G171–G193.

    Article  Google Scholar 

  163. Dou W, Zhang J, Sun A, et al. Protective effect of naringenin against experimental colitis via suppression of Toll-like receptor 4/NF-κB signalling. Br J Nutr. 2013;110:599–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Kim JS, Jobin C. The flavonoid luteolin prevents lipopolysaccharide-induced NF-κB signalling and gene expression by blocking IκB kinase activity in intestinal epithelial cells and bone-marrow derived dendritic cells. Immunology. 2005;115:375–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Singh R, Chandrashekharappa S, Bodduluri SR, et al. Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nat Commun. 2019;10:1–18.

    Article  CAS  Google Scholar 

  166. Yeganeh PR, Leahy J, Spahis S, et al. Apple peel polyphenols reduce mitochondrial dysfunction in mice with DSS-induced ulcerative colitis. J Nutr Biochem. 2018;57:56–66.

    Article  CAS  PubMed  Google Scholar 

  167. Wu W, Wang S, Liu Q, Shan T, Wang Y. Metformin protects against LPS-induced intestinal barrier dysfunction by activating AMPK pathway. Mol Pharm. 2018;15:3272–3284.

    Article  CAS  PubMed  Google Scholar 

  168. Wu H, Luo T, Li YM, et al. Granny Smith apple procyanidin extract upregulates tight junction protein expression and modulates oxidative stress and inflammation in lipopolysaccharide-induced Caco-2 cells. Food Funct. 2018;9:3321–3329.

    Article  CAS  PubMed  Google Scholar 

  169. Muku G, Murray I, Espín J, Perdew G. Urolithin A is a dietary microbiota-derived human aryl hydrocarbon receptor antagonist. Metabolites. 2018;8:1–18.

    Article  CAS  Google Scholar 

  170. Denis MC, Roy D, Yeganeh PR, et al. Apple peel polyphenols: a key player in the prevention and treatment of experimental inflammatory bowel disease. Clin Sci. 2016;130:2217–2237.

    Article  CAS  Google Scholar 

  171. Bucio-Noble D, Kautto L, Krisp C, Ball MS, Molloy MP. Polyphenol extracts from dried sugarcane inhibit inflammatory mediators in an in vitro colon cancer model. J Proteom. 2018;177:1–10.

    Article  CAS  Google Scholar 

  172. Nunes C, Almeida L, Barbosa RM, Laranjinha J. Luteolin suppresses the JAK/STAT pathway in a cellular model of intestinal inflammation. Food Funct. 2017;8:387–396.

    Article  CAS  PubMed  Google Scholar 

  173. Kim H, Banerjee N, Sirven MA, et al. Pomegranate polyphenolics reduce inflammation and ulceration in intestinal colitis-involvement of the miR-145/p70S6K1/HIF1 alpha axis in vivo and in vitro. J Nutr Biochem. 2017;43:107–115.

    Article  CAS  PubMed  Google Scholar 

  174. Szandruk M, Merwid-Lad A, Szelag A. The impact of mangiferin from Belamcanda chinensis on experimental colitis in rats. Inflammopharmacology. 2018;26:571–581.

    Article  CAS  PubMed  Google Scholar 

  175. Rodriguez-Ramiro I, Ramos S, Lopez-Oliva E, et al. Cocoa polyphenols prevent inflammation in the colon of azoxymethane-treated rats and in TNF-alpha-stimulated Caco-2 cells. Br J Nutr. 2013;110:206–215.

    Article  CAS  PubMed  Google Scholar 

  176. Wardyn JD, Ponsford AH, Sanderson CM. Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem Soc Trans. 2015;43:621–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Cerdá B, Periago P, Espín JC, Tomás-Barberán FA. Identification of urolithin A as a metabolite produced by human colon microflora from ellagic acid and related compounds. J Agric Food Chem. 2005;53:5571–5576.

    Article  PubMed  CAS  Google Scholar 

  178. Chiou Y-S, Huang Q, Ho C-T, Wang Y-J, Pan M-H. Directly interact with Keap1 and LPS is involved in the anti-inflammatory mechanisms of (−)-epicatechin-3-gallate in LPS-induced macrophages and endotoxemia. Free Rad Biol Med. 2016;94:1–16.

    Article  CAS  PubMed  Google Scholar 

  179. Fraga CG, Oteiza PI, Galleano M. Plant bioactives and redox signaling: (−)-Epicatechin as a paradigm. Mol Asp Med. 2018;61:31–40.

    Article  CAS  Google Scholar 

  180. Buckley A, Turner JR. Cell biology of tight junction barrier regulation and mucosal disease. CSH Perspect Biol. 2018;10:1–16.

    Google Scholar 

  181. Bischoff SC, Barbara G, Buurman W, et al. Intestinal permeability—a new target for disease prevention and therapy. BMC Gastroenterol. 2014;14:1–25.

    Article  CAS  Google Scholar 

  182. Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–1772.

    Article  CAS  PubMed  Google Scholar 

  183. Amasheh M, Schlichter S, Amasheh S, et al. Quercetin enhances epithelial barrier function and increases claudin-4 expression in Caco-2 cells. J Nutr. 2008;138:1067–1073.

    Article  CAS  PubMed  Google Scholar 

  184. Suzuki T, Hara H. Quercetin enhances intestinal barrier function through the assembly of zonnula occludens-2, occludin, and claudin-1 and the expression of claudin-4 in Caco-2 cells. J Nutr. 2009;139:965–974.

    Article  CAS  PubMed  Google Scholar 

  185. Suzuki T, Tanabe S, Hara H. Kaempferol enhances intestinal barrier function through the cytoskeletal association and expression of tight junction proteins in Caco-2 cells–3. J Nutr. 2010;141:87–94.

    Article  PubMed  CAS  Google Scholar 

  186. Sun X, Yang Q, Rogers CJ, Du M, Zhu M-J. AMPK improves gut epithelial differentiation and barrier function via regulating Cdx2 expression. Cell Death Differ. 2017;24:819–831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Di Fusco D, Dinallo V, Monteleone I, et al. Metformin inhibits inflammatory signals in the gut by controlling AMPK and p38 MAP kinase activation. Clin Sci. 2018;132:1165–1168.

    Article  CAS  Google Scholar 

  188. Hwang J-T, Kwon DY, Yoon SH. AMP-activated protein kinase: a potential target for the diseases prevention by natural occurring polyphenols. New Biotechnol. 2009;26:17–22.

    Article  CAS  Google Scholar 

  189. Hardie DG. AMPK: a target for drugs and natural products with effects on both diabetes and cancer. Diabetes. 2013;62:2164–2172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Sun X, Du M, Navarre DA, Zhu MJ. Purple potato extract promotes intestinal epithelial differentiation and barrier function by activating AMP-activated protein kinase. Mol Nutr Food Res. 2018;62:1700536.

    Article  CAS  Google Scholar 

  191. Wang K, Jin X, Chen Y, et al. Polyphenol-rich propolis extracts strengthen intestinal barrier function by activating AMPK and ERK signaling. Nutrients. 2016;8:1–12.

    Google Scholar 

  192. Lebrun LJ, Lenaerts K, Kiers D, et al. Enteroendocrine L cells sense LPS after gut barrier injury to enhance GLP-1 secretion. Cell Rep. 2017;21:1160–1168.

    Article  CAS  PubMed  Google Scholar 

  193. Villa-Rodriguez JA, Ifie I, Gonzalez-Aguilar GA, Roopchand DE. The gastrointestinal tract as prime site for cardiometabolic protection by dietary polyphenols. Adv Nutr. 2019;10:999–1011.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Domínguez Avila J, Rodrigo García J, González Aguilar G, de la Rosa L. The antidiabetic mechanisms of polyphenols related to increased glucagon-like peptide-1 (GLP1) and insulin signaling. Molecules. 2017;22:1–16.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Instituto de Bebidas de la Industria Mexicana de Coca-Cola through project “Inducción de saciedad y modulación de la digestión intestinal de lípidos ejercidos por los compuestos fenólicos de aguacate Hass” (Premio Nacional en Ciencia y Tecnología de Alimentos 2019); Consejo Nacional de Ciencia y Tecnología (CONACYT) (265216) through project “Satiety-inducing actions and modulation of lipid digestion exerted by phenolic compounds from avocado byproducts. An enteroendocrine and behavioral study”; and by CIAD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Abraham Domínguez-Avila.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domínguez-Avila, J.A., Villa-Rodriguez, J.A., Montiel-Herrera, M. et al. Phenolic Compounds Promote Diversity of Gut Microbiota and Maintain Colonic Health. Dig Dis Sci 66, 3270–3289 (2021). https://doi.org/10.1007/s10620-020-06676-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-020-06676-7

Keywords

Navigation