Skip to main content

Advertisement

Log in

Inhibition of Endothelial Slit2/Robo1 Signaling by Thalidomide Restrains Angiogenesis by Blocking the PI3K/Akt Pathway

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Thalidomide is effective in the treatment of angiodysplasia. The mechanisms underlying its activity may be associated with inhibition of angiogenic factors. It was recently shown that Slit2/Robo1 signaling plays a role in angiogenesis.

Purpose

The aim of this study was to explore the expression and effects of Robo1 and Slit2 in angiodysplasia and to identify the possible therapeutic mechanisms of thalidomide.

Method

Slit2 and Robo1 expression were analyzed in tissue samples and human umbilical vein endothelial cells (HUVECs) treated with thalidomide using a combination of laboratory assays that were able to detect functional activity.

Results

Slit2, Robo1 and vascular endothelial growth factor (VEGF) were strongly expressed in five angiodysplasia lesions out of seven cases, while expression was low in one out of seven normal tissues. Exposure of HUVECs to recombinant N-Slit2 resulted in an increase in VEGF levels and stimulated proliferation, migration and tube formation. These effects were blocked by an inhibitor of PI3K and thalidomide.

Conclusions

Robo1 and Slit2 may have important roles in the formation of gastrointestinal vascular malformation. High concentrations of Slit2 increased the levels of VEGF in HUVECs via signaling through the PI3K/Akt pathway—an effect that could be inhibited by thalidomide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Regula J, Wronska E, Pachlewski J. Vascular lesions of the gastrointestinal tract. Best Pract Res Clin Gastroenterol. 2008;22:313–328.

    Article  PubMed  Google Scholar 

  2. Junquera F, Saperas E, de Torres I, Vidal MT, Malagelada JR. Increased expression of angiogenic factors in human colonic angiodysplasia. Am J Gastroenterol. 1999;94:1070–1076.

    Article  CAS  PubMed  Google Scholar 

  3. Paul JD, Coulombe KL, Toth PT, et al. SLIT3-ROBO4 activation promotes vascular network formation in human engineered tissue and angiogenesis in vivo. J Mol Cell Cardiol. 2013;64:124–131.

    Article  CAS  PubMed  Google Scholar 

  4. Guo SW, Zheng Y, Lu Y, et al. Slit2 overexpression results in increased microvessel density and lesion size in mice with induced endometriosis. Reprod Sci. 2013;20:285–298.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Brose K, Bland KS, Wang KH, et al. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell. 1999;96:795–806.

    Article  CAS  PubMed  Google Scholar 

  6. Wong K, Park HT, Wu JY, Rao Y. Slit proteins: molecular guidance cues for cells ranging from neurons to leukocytes. Curr Opin Genet Dev. 2002;12:583–591.

    Article  CAS  PubMed  Google Scholar 

  7. Kramer SG, Kidd T, Simpson JH, Goodman CS. Switching repulsion to attraction: changing responses to slit during transition in mesoderm migration. Science. 2001;292:737–740.

    Article  CAS  PubMed  Google Scholar 

  8. Adams RH, Eichmann A. Axon guidance molecules in vascular patterning. Cold Spring Harb Perspect Biol. 2010;2:a001875.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Sheldon H, Andre M, Legg JA, et al. Active involvement of Robo1 and Robo4 in filopodia formation and endothelial cell motility mediated via WASP and other actin nucleation-promoting factors. FASEB J. 2009;23:513–522.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Urbich C, Rössig L, Kaluza D, et al. HDAC5 is a repressor of angiogenesis and determines the angiogenic gene expression pattern of endothelial cells. Blood. 2009;113:5669–5679.

    Article  CAS  PubMed  Google Scholar 

  11. Wang B, Xiao Y, Ding BB, et al. Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer Cell. 2003;4:19–29.

    Article  PubMed  Google Scholar 

  12. Zhou W, Yu W, Xie W, et al. The role of SLIT-ROBO signaling in proliferative diabeticretinopathy and retinal pigment epithelial cells. Molecular Vision. 2011;17:1526–1536.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Liao WX, Laurent LC, Agent S, Hodges J, Chen DB. Human placental expression of Slit/ROBO signaling cues: effects of preeclampsia and hypoxia. Biol Reprod. 2012;86:111.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Zhou W, Yu W, Xie W, Huang L, Xu Y, Li X. The role of Slit-ROBO signaling in proliferative diabetic retinopathy and retinal pigment epithelial cells. Mol Vis. 2011;17:1526–1536.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Yang XM, Han HX, Sui F, Dai YM, Chen M, Geng JG. Slit-Robo signaling mediates lymphangiogenesis and promotes tumor lymphatic metastasis. Biochem Biophys Res Commun. 2010;396:571–577.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Bartlett JB, Dredge K, Dalgleish AG. The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat Rev Cancer. 2004;4:314–322.

    Article  CAS  PubMed  Google Scholar 

  17. Danese S, Sans M, Spencer DM, et al. Angiogenesis blockade as a new therapeutic approach to experimental colitis. Gut. 2007;56:855–862.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Ge ZZ, Chen HM, Gao YJ, et al. Long-term effects of thalidomide for recurrent gastrointestinal bleeding due to vascular malformation: an open-label, randomized, parallel controlled study. Gastroenterology. 2011;141:1629–1637.

    Article  CAS  PubMed  Google Scholar 

  19. Lebrin F, Srun S, Raymond K, et al. Thalidomide stimulates vessel maturation and reduces epistaxis in individuals with hereditary hemorrhagic telangiectasia. Nat Med. 2010;16:420–428.

    Article  CAS  PubMed  Google Scholar 

  20. Regula J, Wronska E, Pachlewski J. Vascular lesions of the gastrointestinal tract. Best Pract Res Clin Gastroenterol. 2008;22:313–328.

    Article  PubMed  Google Scholar 

  21. Tan H, Chen H, Xu C, et al. Role of vascular endothelial growth factor in angiodysplasia: an interventional study with thalidomide. J Gastroenterol Hepatol. 2012;27:1094–1101.

    Article  CAS  PubMed  Google Scholar 

  22. Chavakis E, Dernbach E, Hermann C, Mondorf UF, Zeiher AM, Dimmeler S. Oxidized LDL inhibits vascular endothelial growth factor-induced endothelial cell migration by an inhibitory effect on the Akt/endothelial nitric oxide synthase pathway. Circulation. 2001;103:2102–2103.

    Article  CAS  PubMed  Google Scholar 

  23. Fujio Y, Walsh K. Akt mediates cytoprotection of endothelial cells by vascular endothelial growth factor in an anchorage-dependent manner. J Biol Chem. 1999;274:16349–16354.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Nakamura JL, Karlsson A, Arvold ND, et al. PKB/Akt mediates radiosensitization by the signaling inhibitor LY294002 in human malignant gliomas. J Neurooncol. 2005;71:215–222.

    Article  CAS  PubMed  Google Scholar 

  25. Benedito R, Roca C, Sörensen I, et al. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell.. 2009;137:1124–1135.

    Article  CAS  PubMed  Google Scholar 

  26. Larrivée B, Prahst C, Gordon E, et al. ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway. Dev Cell. 2012;22:489–500.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Hernandez SL, Banerjee D, Garcia A, et al. Notch and VEGF pathways play distinct but complementary roles in tumor angiogenesis. Vasc Cell. 2013;5:17.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Zhu Y, Lee C, Shen F, Du R, Young WL, Yang GY. Angiopoietin-2 facilitates vascular endothelial growth factor-induced angiogenesis in mature mouse brain. Stroke. 2005;36:1533–1537.

    Article  CAS  PubMed  Google Scholar 

  29. Loukovaara S, Robciuc A, Holopainen JM. Ang-2 upregulation correlates with increased levels of MMP-9, VEGF, EPO and TGFβ1 in diabetic eyes undergoing vitrectomy. Acta Ophthalmol. 2013;91:513–519.

    Article  Google Scholar 

  30. Saunders WB, Bohnsack BL, Faske JB, et al. Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3. J Cell Biol. 2006;175:179–191.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Knobloch J, Schmitz I, Götz K, Schulze-Osthoff K, Rüther U. Thalidomide induces limb anomalies by PTEN stabilization, Akt suppression, and stimulation of caspase-dependent cell death. Mol Cell Biol. 2008;28:529–538.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Therapontos C, Erskine L, Gardner ER, Figg WD, Vargesson N. Thalidomide induces limb defects by preventing angiogenic outgrowth during early limb formation. Proc Natl Acad Sci USA. 2009;106:8573–8578.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Dredge K, Horsfall R, Robinson SP, et al. Orally administered lenalidomide (CC-5013) is anti-angiogenic in vivo and inhibits endothelial cell migration and Akt phosphorylation in vitro. Microvas Res. 2005;69:59–63.

    Google Scholar 

  34. Terpos E, Kanellias N, Christoulas D, Kastritis D, Dimopoulos MA. Pomalidomide: a novel drug to treat relapsed and refractory multiple myeloma. Onco Targets Ther. 2013;6:531–538.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Dredge K, Marriott JB, Macdonald CD, et al. Novel thalidomide analogues display anti-angiogenic activity independently of immunomodulatory effects. Br J Cancer. 2002;87:1166–1172.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The research presented here was funded by the Shanghai Municipal Health Bureau Academic Discipline Project, Project Number: 20114002.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhizheng Ge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Fu, S., Chen, H. et al. Inhibition of Endothelial Slit2/Robo1 Signaling by Thalidomide Restrains Angiogenesis by Blocking the PI3K/Akt Pathway. Dig Dis Sci 59, 2958–2966 (2014). https://doi.org/10.1007/s10620-014-3257-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-014-3257-5

Keywords

Navigation