Skip to main content

Advertisement

Log in

Telmisartan Plus Propranolol Improves Liver Fibrosis and Bile Duct Proliferation in the PSC-Like Abcb4−/− Mouse Model

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease leading to cirrhosis and cholangiocellular carcinoma. Inhibitors of the renin–angiotensin system or the sympathetic nervous system delay liver fibrogenesis in animal models.

Aims

We investigated the antifibrotic potential of telmisartan, an angiotensin II type 1 receptor antagonist, and the β-adrenoceptor blocker propranolol in the PSC-like Abcb4 knockout mouse model.

Methods

Sixty-five Abcb4−/− mice were treated with telmisartan for 3 or 5 months (T) and with telmisartan plus propranolol for 3, 5, or 8 months (TP), or for 2 or 5 months starting with a delay of 3 months (TP delayed). Liver hydroxyproline content, inflammation, fibrosis, and bile duct proliferation were assessed; fibrosis-related molecules were analyzed by real-time polymerase chain reaction and Western blotting.

Results

Compared to controls, telmisartan monotherapy had no significant influence on hydroxyproline; however, telmisartan plus propranolol reduced hydroxyproline (TP 3 months, p = 0.008), fibrosis score (TP 3 months and TP 8 months, p = 0.043 and p = 0.008, respectively; TP delayed 8 months, p < 0.0005), bile duct proliferation (TP 8 months and TP delayed 8 months, p = 0.006 and p < 0.0005, respectively), and procollagen α1(I), endothelin-1, TIMP-1 and MMP3 mRNA as well as α-SMA, CK-19, and TIMP-1 protein.

Conclusions

Telmisartan plus propranolol reduces liver fibrosis and bile duct proliferation in the PSC-like Abcb4−/− mouse model, even when started at late stages of fibrosis, and may thus represent a novel therapeutic option for cholestatic liver diseases such as PSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

α-SMA:

α-Smooth muscle actin

ADR:

Adrenoceptor

Ang II:

Angiotensin II

ACE:

Angiotensin converting enzyme

AT1R:

Angiotensin II type 1 receptor

ARB:

Angiotensin II type 1 receptor blocker

CTGF:

Connective tissue growth factor

CK-19:

Cytokeratin-19

ET-1:

Endothelin-1

ECM:

Extracellular matrix

HSC:

Hepatic stellate cell

MMP:

Matrix metalloproteinase

PSC:

Primary sclerosing cholangitis

PC-α1:

Procollagen α1(I)

RT-PCR:

Real-time quantitative reverse transcription polymerase chain reaction

RAS:

Renin–angiotensin system

SNS:

Sympathetic nervous system

TIMP:

Tissue inhibitor of matrix metalloproteinase

References

  1. Weismüller T, Wedemeyer J, Kubicka S, Strassburg C, Manns M. The challenges in primary sclerosing cholangitis—aetiopathogenesis, autoimmunity, management and malignancy. J Hepatol. 2008;48:S38–S57.

    Article  PubMed  Google Scholar 

  2. Lindor K, Kowdley K, Luketic V, et al. High-dose ursodeoxycholic acid for the treatment of primary sclerosing cholangitis. Hepatology. 2009;50:808–814.

    Article  PubMed  CAS  Google Scholar 

  3. Ramadori G, Veit T, Schwogler S, et al. Expression of the gene of the alpha-smooth muscle-actin isoform in rat liver and in rat fat-storing (ITO) cells. Virchows Arch B Cell Pathol Incl Mol Pathol. 1990;59:349–357.

    Article  PubMed  CAS  Google Scholar 

  4. Wynn T. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214:199–210.

    Article  PubMed  CAS  Google Scholar 

  5. Fickert P, Fuchsbichler A, Wagner M, et al. Regurgitation of bile acids from leaky bile ducts causes sclerosing cholangitis in Mdr2 (Abcb4) knockout mice. Gastroenterology. 2004;127:261–274.

    Article  PubMed  CAS  Google Scholar 

  6. Kawai M, Hongo K, Komukai K, et al. Telmisartan predominantly suppresses cardiac fibrosis, rather than hypertrophy, in renovascular hypertensive rats. Hypertens Res. 2009;32:604–610.

    Article  PubMed  CAS  Google Scholar 

  7. Naito T, Ma L, Yang H, et al. Angiotensin type 2 receptor actions contribute to angiotensin type 1 receptor blocker effects on kidney fibrosis. Am J Physiol Renal Physiol. 2009;298:F683–F691.

    Article  PubMed  Google Scholar 

  8. Töx U, Steffen HM. Impact of inhibitors of the renin–angiotensin–aldosterone system on liver fibrosis and portal hypertension. Curr Med Chem. 2006;13:3649–3661.

    Article  PubMed  Google Scholar 

  9. Bataller R, Ginès P, Nicolás J, et al. Angiotensin II induces contraction and proliferation of human hepatic stellate cells. Gastroenterology. 2000;118:1149–1156.

    Article  PubMed  CAS  Google Scholar 

  10. Barki-Harrington L, Luttrell L, Rockman H. Dual inhibition of beta-adrenergic and angiotensin II receptors by a single antagonist: a functional role for receptor–receptor interaction in vivo. Circulation. 2003;108:1611–1618.

    Article  PubMed  CAS  Google Scholar 

  11. Bataller R, Schwabe R, Choi Y, et al. NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis. J Clin Invest. 2003;112:1383–1394.

    PubMed  CAS  Google Scholar 

  12. Goebel M, Clemenz M, Unger T. Effective treatment of hypertension by AT(1) receptor antagonism: the past and future of telmisartan. Expert Rev Cardiovasc Ther. 2006;4:615–629.

    Article  PubMed  CAS  Google Scholar 

  13. Kurtz TW, Pravenec M. Antidiabetic mechanisms of angiotensin-converting enzyme inhibitors and angiotensin II receptor antagonists: beyond the renin-angiotensin system. J Hypertens. 2004;22:2253–2261.

    Article  PubMed  CAS  Google Scholar 

  14. Nakagami H, Kiomy Osako M, Nakagami F, et al. Prevention and regression of non-alcoholic steatohepatitis (NASH) in a rat model by metabosartan, telmisartan. Int J Mol Med. 2010;26:477–481.

    PubMed  CAS  Google Scholar 

  15. Okunuki Y, Usui Y, Nagai N, et al. Suppression of experimental autoimmune uveitis by angiotensin II type 1 receptor blocker telmisartan. Invest Ophthalmol Vis Sci. 2009;50:2255–2261.

    Article  PubMed  Google Scholar 

  16. Wang Z, Xu JP, Zheng YC, et al. Peroxisome proliferator-activated receptor gamma inhibits hepatic fibrosis in rats. Hepatobiliary Pancreat Dis Int. 2011;10:64–71.

    Article  PubMed  CAS  Google Scholar 

  17. Yang L, Stimpson SA, Chen L, Wallace Harrington W, Rockey DC. Effectiveness of the PPARgamma agonist, GW570, in liver fibrosis. Inflamm Res. 2010;59:1061–1071.

    Article  PubMed  CAS  Google Scholar 

  18. Oben J, Roskams T, Yang S, et al. Hepatic fibrogenesis requires sympathetic neurotransmitters. Gut. 2004;53:438–445.

    Article  PubMed  CAS  Google Scholar 

  19. Atlas S. The renin–angiotensin aldosterone system: pathophysiological role and pharmacologic inhibition. J Manag Care Pharm. 2007;13:9–20.

    PubMed  Google Scholar 

  20. Oben J, Roskams T, Yang S, et al. Norepinephrine induces hepatic fibrogenesis in leptin deficient ob/ob mice. Biochem Biophys Res Commun. 2003;308:284–292.

    Article  PubMed  CAS  Google Scholar 

  21. Dubuisson L, Desmoulière A, Decourt B, et al. Inhibition of rat liver fibrogenesis through noradrenergic antagonism. Hepatology. 2002;35:325–331.

    Article  PubMed  CAS  Google Scholar 

  22. Oben J, Roskams T, Yang S, et al. Sympathetic nervous system inhibition increases hepatic progenitors and reduces liver injury. Hepatology. 2003;38:664–673.

    Article  PubMed  CAS  Google Scholar 

  23. Strack I, Schulte S, Varnholt H, et al. β-Adrenoceptor blockade in sclerosing cholangitis of Mdr2 knockout mice: antifibrotic effects in a model of nonsinusoidal fibrosis. Lab Invest. 2011;91:252–261.

    Article  PubMed  CAS  Google Scholar 

  24. Takaya T, Kawashima S, Shinohara M, et al. Angiotensin II type 1 receptor blocker telmisartan suppresses superoxide production and reduces atherosclerotic lesion formation in apolipoprotein E-deficient mice. Atherosclerosis. 2006;186:402–410.

    Article  PubMed  CAS  Google Scholar 

  25. Su J, Chen S, Wu K, et al. Effects of perindopril, propranolol, and dihydrochlorothiazide on cardiovascular remodelling in spontaneously hypertensive rats. Zhongguo Yao Li Xue Bao. 1999;20:923–928.

    PubMed  CAS  Google Scholar 

  26. Schulte S, Oidtmann A, Kociok N, et al. Hepatocyte expression of angiotensin II type 1 receptor is downregulated in advanced human liver fibrosis. Liver Int. 2009;29:384–391.

    Article  PubMed  CAS  Google Scholar 

  27. Stegemann H, Stalder K. Determination of hydroxyproline. Clin Chim Acta. 1967;18:267–273.

    Article  PubMed  CAS  Google Scholar 

  28. Batts K, Ludwig J. Chronic hepatitis. An update on terminology and reporting. Am J Surg Pathol. 1995;19:1409–1417.

    Article  PubMed  CAS  Google Scholar 

  29. Chevallier M, Guerret S, Chossegros P, Gerard F, Grimaud J. A histological semiquantitative scoring system for evaluation of hepatic fibrosis in needle liver biopsy specimens: comparison with morphometric studies. Hepatology. 1994;20:349–355.

    Article  PubMed  CAS  Google Scholar 

  30. Farazi P, Zeisberg M, Glickman J, Zhang Y, Kalluri R, DePinho R. Chronic bile duct injury associated with fibrotic matrix microenvironment provokes cholangiocarcinoma in p53-deficient mice. Cancer Res. 2006;66:6622–6627.

    Article  PubMed  CAS  Google Scholar 

  31. Multi-system analysis of physiology on 7 inbred strains of mice. (Database on the Internet) 2011. Cited 20 Jan 2011. Available from: http://phenome.jax.org.

  32. Silveira M, Lindor K. Primary sclerosing cholangitis. Can J Gastroenterol. 2008;22:689–698.

    PubMed  Google Scholar 

  33. Kanno K, Tazuma S, Chayama K. AT1A-deficient mice show less severe progression of liver fibrosis induced by CCl(4). Biochem Biophys Res Commun. 2003;308:177–183.

    Article  PubMed  CAS  Google Scholar 

  34. Priester S, Wise C, Glaser SS. Involvement of cholangiocyte proliferation in biliary fibrosis. World J Gastroint Pathophysiol. 2010;1:30–37.

    Article  Google Scholar 

  35. Trauner M, Fickert P, Baghdasaryan A, et al. New insights into autoimmune cholangitis through animal models. Dig Dis. 2010;28:99–104.

    Article  PubMed  Google Scholar 

  36. Pinzani M, Milani S, De Franco R, et al. Endothelin 1 is overexpressed in human cirrhotic liver and exerts multiple effects on activated hepatic stellate cells. Gastroenterology. 1996;110:534–548.

    Article  PubMed  CAS  Google Scholar 

  37. Rockey D, Chung J. Endothelin antagonism in experimental hepatic fibrosis. Implications for endothelin in the pathogenesis of wound healing. J Clin Invest. 1996;98:1381–1388.

    Article  PubMed  CAS  Google Scholar 

  38. He S, Prasanna G, Yorio T. Endothelin-1-mediated signaling in the expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in astrocytes. Invest Ophthalmol Vis Sci. 2007;48:3737–3745.

    Article  PubMed  Google Scholar 

  39. Teerlink J. Reversal of left ventricular remodeling: role of the endothelin pathway. J Card Fail. 2002;8:S494–S499.

    Article  PubMed  CAS  Google Scholar 

  40. Schmitt-Gräff A, Chakroun G, Gabbiani G. Modulation of perisinusoidal cell cytoskeletal features during experimental hepatic fibrosis. Virchows Arch A Pathol Anat Histopathol. 1993;422:99–107.

    Article  PubMed  Google Scholar 

  41. Popov Y, Patsenker E, Fickert P, Trauner M, Schuppan D. Mdr2 (Abcb4)−/− mice spontaneously develop severe biliary fibrosis via massive dysregulation of pro- and antifibrogenic genes. J Hepatol. 2005;43:1045–1054.

    Article  PubMed  CAS  Google Scholar 

  42. Roderfeld M, Rath T, Voswinckel R, et al. Bone marrow transplantation demonstrates medullar origin of CD34+ fibrocytes and ameliorates hepatic fibrosis in Abcb4−/− mice. Hepatology. 2010;51:267–276.

    Article  PubMed  CAS  Google Scholar 

  43. Mayoral P, Criado M, Hidalgo F, et al. Effects of chronic nitric oxide activation or inhibition on early hepatic fibrosis in rats with bile duct ligation. Clin Sci (Lond). 1999;96:297–305.

    Article  CAS  Google Scholar 

  44. Gomes A, Bastos C, Afonso C, Medrado B, Andrade Z. How variable are hydroxyproline determinations made in different samples of the same liver? Clin Biochem. 2006;39:1160–1163.

    Article  PubMed  CAS  Google Scholar 

  45. Iredale J, Benyon R, Arthur M, et al. Tissue inhibitor of metalloproteinase-1 messenger RNA expression is enhanced relative to interstitial collagenase messenger RNA in experimental liver injury and fibrosis. Hepatology. 1996;24:176–184.

    Article  PubMed  CAS  Google Scholar 

  46. Okazaki I, Watanabe T, Hozawa S, Niioka M, Arai M, Maruyama K. Reversibility of hepatic fibrosis: from the first report of collagenase in the liver to the possibility of gene therapy for recovery. Keio J Med. 2001;50:58–65.

    Article  PubMed  CAS  Google Scholar 

  47. Steenport M, Khan K, Du B, Barnhard S, Dannenberg A, Falcone D. Matrix metalloproteinase (MMP)-1 and MMP-3 induce macrophage MMP-9: evidence for the role of TNF-alpha and cyclooxygenase-2. J Immunol. 2009;183:8119–8127.

    Article  PubMed  CAS  Google Scholar 

  48. Border W, Noble N. Transforming growth factor beta in tissue fibrosis. N Engl J Med. 1994;331:1286–1292.

    Article  PubMed  CAS  Google Scholar 

  49. Nakken K, Nygård S, Haaland T, et al. Multiple inflammatory-, tissue remodelling- and fibrosis genes are differentially transcribed in the livers of Abcb4 (−/−) mice harbouring chronic cholangitis. Scand J Gastroenterol. 2007;42:1245–1255.

    Article  PubMed  CAS  Google Scholar 

  50. Jin H, Yamamoto N, Uchida K, Terai S, Sakaida I. Telmisartan prevents hepatic fibrosis and enzyme-altered lesions in liver cirrhosis rat induced by a choline-deficient l-amino acid-defined diet. Biochem Biophys Res Commun. 2007;364:801–807.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the excellent technical assistance of Gudrun Suckau and Brigitta Jacob. We are also indebted to Boehringer Ingelheim GmbH & Co. KG for kindly providing telmisartan. This work was supported by a grant from the Marga and Walter Boll Stiftung.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Töx.

Additional information

Susanne Mende, Sigrid Schulte and Ingo Strack contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 149 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mende, S., Schulte, S., Strack, I. et al. Telmisartan Plus Propranolol Improves Liver Fibrosis and Bile Duct Proliferation in the PSC-Like Abcb4−/− Mouse Model. Dig Dis Sci 58, 1271–1281 (2013). https://doi.org/10.1007/s10620-012-2499-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-012-2499-3

Keywords

Navigation