Skip to main content

Advertisement

Log in

E2F Promoter-Regulated Oncolytic Adenovirus with p16 Gene Induces Cell Apoptosis and Exerts Antitumor Effect on Gastric Cancer

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

An Erratum to this article was published on 08 May 2009

Abstract

Replication-competent adenovirus (RCAd) constitutes an alternative in cancer therapy. For obtaining advanced RCAd generations with high oncolytic capability and a good safety profile, we constructed an E2F promoter-regulated RCAd carrying p16 gene, AdE2F-p16, in which the E1a gene was controlled by the E2F promoter. The experimental data showed that the E2F promoter endowed AdE2F-p16 with high specificity in cancer cells. While rarely replicating in normal cells, AdE2F-p16 could replicate in p16-deficient cancer cells, with 2,937- to 160,000-fold increased replicative capability in different cancer cell lines. AdE2F-p16 expressed p16 within cancer cells and led to potent antitumor efficacy in gastric cancer xenografts in nude mice, with a tumor inhibition rate of 59.14%. Due to the combined effects of cancer cell apoptosis induced by p16 expression and oncolysis by virus replication, the E2F promoter-regulated, p16-armed RCAd provides a promising strategy for cancer gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Su C, Na M, Chen J, et al. Gene-viral cancer therapy using dual-regulated oncolytic adenovirus with antiangiogenesis gene for increased efficacy. Mol Cancer Res. 2008;6:568–575. doi:10.1158/1541-7786.MCR-07-0073.

    Article  PubMed  CAS  Google Scholar 

  2. Yang ZR, Wang HF, Zhao J, et al. Recent developments in the use of adenoviruses and immunotoxins in cancer gene therapy. Cancer Gene Ther. 2007;14:599–615. doi:10.1038/sj.cgt.7701054.

    Article  PubMed  CAS  Google Scholar 

  3. Yang C, Cirielli C, Capogrossi MC, Passaniti A. Adenovirus-mediated wild-type p53 expression induces apoptosis and suppresses tumorigenesis of prostatic tumor cells. Cancer Res. 1995;55:4210–4213.

    PubMed  CAS  Google Scholar 

  4. Andrews JL, Kadan MJ, Gorziglia MI, Kaleko M, Connelly S. Generation and characterization of E1/E2a/E3/E4-deficient adenoviral vectors encoding human factor VIII. Mol Ther. 2001;3:329–336. doi:10.1006/mthe.2001.0264.

    Article  PubMed  CAS  Google Scholar 

  5. Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003;4:346–358. doi:10.1038/nrg1066.

    Article  PubMed  CAS  Google Scholar 

  6. Kurihara T, Brough DE, Kovesdi I, Kufe DW. Selectivity of a replication-competent adenovirus for human breast carcinoma cells expressing the MUC1 antigen. J Clin Invest. 2000;106:763–771. doi:10.1172/JCI9180.

    Article  PubMed  CAS  Google Scholar 

  7. Eberle J, Fecker LF, Hossini AM, Kurbanov BM, Fechner H. Apoptosis pathways and oncolytic adenoviral vectors: promising targets and tools to overcome therapy resistance of malignant melanoma. Exp Dermatol. 2008;17:1–11. doi:10.1159/000109583.

    PubMed  CAS  Google Scholar 

  8. Alemany R, Balague C, Curiel DT. Replicative adenoviruses for cancer therapy. Nat Biotechnol. 2000;18:723–727. doi:10.1038/77283.

    Article  PubMed  CAS  Google Scholar 

  9. Biederer C, Ries S, Brandts CH, McCormick F. Replication-selective viruses for cancer therapy. J Mol Med. 2002;80:163–175. doi:10.1007/s00109-001-0295-1.

    Article  PubMed  CAS  Google Scholar 

  10. Hioki M, Kagawa S, Fujiwara T, et al. Combination of oncolytic adenovirotherapy and Bax gene therapy in human cancer xenografted models. Potential merits and hurdles for combination therapy. Int J Cancer. 2008;122:2628–2633. doi:10.1002/ijc.23438.

    Article  PubMed  CAS  Google Scholar 

  11. Nettelbeck DM. Virotherapeutics: conditionally replicative adenoviruses for viral oncolysis. Anticancer Drugs. 2003;14:577–584. doi:10.1097/00001813-200309000-00001.

    Article  PubMed  CAS  Google Scholar 

  12. Hallden G, Thorne SH, Yang J, Kirn DH. Replication-selective oncolytic adenoviruses. Methods Mol Med. 2004;90:71–90.

    PubMed  CAS  Google Scholar 

  13. Yu W, Fang H. Clinical trials with oncolytic adenovirus in China. Curr Cancer Drug Targets. 2007;7:141–148. doi:10.2174/156800907780058817.

    Article  PubMed  Google Scholar 

  14. Makower D, Rozenblit A, Kaufman H, et al. Phase II clinical trial of intralesional administration of the oncolytic adenovirus ONYX-015 in patients with hepatobiliary tumors with correlative p53 studies. Clin Cancer Res. 2003;9:693–702.

    PubMed  Google Scholar 

  15. Ring CJ. Cytolytic viruses as potential anti-cancer agents. J Gen Virol. 2002;83:491–502.

    PubMed  Google Scholar 

  16. Ries S, Korn WM. ONYX-015: mechanisms of action and clinical potential of a replication-selective adenovirus. Br J Cancer. 2002;86:5–11. doi:10.1038/sj.bjc.6600006.

    Article  PubMed  CAS  Google Scholar 

  17. Morley S, MacDonald G, Kirn D, Kaye S, Brown R, Soutar D. The dl1520 virus is found preferentially in tumor tissue after direct intratumoral injection in oral carcinoma. Clin Cancer Res. 2004;10:4357–4362. doi:10.1158/1078-0432.CCR-03-0443.

    Article  PubMed  CAS  Google Scholar 

  18. Hann B, Balmain A. Replication of an E1B 55-kilodalton protein-deficient adenovirus (ONYX-015) is restored by gain-of-function rather than loss-of-function p53 mutants. J Virol. 2003;77:11588–11595. doi:10.1128/JVI.77.21.11588-11595.2003.

    Article  PubMed  CAS  Google Scholar 

  19. Rothmann T, Hengstermann A, Whitaker NJ, Scheffner M, zur Hausen H. Replication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells. J Virol. 1998;72:9470–9478.

    PubMed  CAS  Google Scholar 

  20. Saukkonen K, Hemminki A. Tissue-specific promoters for cancer gene therapy. Expert Opin Biol Ther. 2004;4:683–696. doi:10.1517/14712598.4.5.683.

    Article  PubMed  CAS  Google Scholar 

  21. Li Y, Chen Y, Dilley J, et al. Carcinoembryonic antigen-producing cell-specific oncolytic adenovirus, OV798, for colorectal cancer therapy. Mol Cancer Ther. 2003;2:1003–1009.

    PubMed  CAS  Google Scholar 

  22. Kim J, Lee B, Kim JS, et al. Antitumoral effects of recombinant adenovirus YKL-1001, conditionally replicating in alpha-fetoprotein-producing human liver cancer cells. Cancer Lett. 2002;180:23–32. doi:10.1016/S0304-3835(02)00017-4.

    Article  PubMed  CAS  Google Scholar 

  23. Li Y, Yu DC, Chen Y, et al. A hepatocellular carcinoma-specific adenovirus variant, CV890, eliminates distant human liver tumors in combination with doxorubicin. Cancer Res. 2001;61:6428–6436.

    PubMed  CAS  Google Scholar 

  24. Gemin A, Sweet S, Preston TJ, Singh G. Regulation of the cell cycle in response to inhibition of mitochondrial generated energy. Biochem Biophys Res Commun. 2005;332:1122–1132. doi:10.1016/j.bbrc.2005.05.061.

    Article  PubMed  CAS  Google Scholar 

  25. Johnson L, Shen A, Boyle L, et al. Selectively replicating adenoviruses targeting deregulated E2F activity are potent, systemic antitumor agents. Cancer Cell. 2002;1:325–337. doi:10.1016/S1535-6108(02)00060-0.

    Article  PubMed  CAS  Google Scholar 

  26. Tsukuda K, Wiewrodt R, Molnar-Kimber K, Jovanovic VP, Amin KM. An E2F-responsive replication-selective adenovirus targeted to the defective cell cycle in cancer cells: potent antitumoral efficacy but no toxicity to normal cell. Cancer Res. 2002;62:3438–3447.

    PubMed  CAS  Google Scholar 

  27. Su CQ, Sham J, Xue HB, et al. Potent antitumoral efficacy of a novel replicative adenovirus CNHK300 targeting telomerase-positive cancer cells. J Cancer Res Clin Oncol. 2004;130:591–603. doi:10.1007/s00432-004-0577-4.

    Article  PubMed  CAS  Google Scholar 

  28. Bett AJ, Haddara W, Prevec L, Graham FL. An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3. Proc Natl Acad Sci USA. 1994;91:8802–8806. doi:10.1073/pnas.91.19.8802.

    Article  PubMed  CAS  Google Scholar 

  29. Zhang ZL, Zou WG, Luo CX, et al. An armed oncolytic adenovirus system, ZD55-gene, demonstrating potent antitumoral efficacy. Cell Res. 2003;13:481–489. doi:10.1038/sj.cr.7290191.

    Article  PubMed  CAS  Google Scholar 

  30. Canepa ET, Scassa ME, Ceruti JM, et al. INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions. IUBMB Life. 2007;59:419–426. doi:10.1080/15216540701488358.

    Article  PubMed  CAS  Google Scholar 

  31. Coqueret O. Linking cyclins to transcriptional control. Gene. 2002;299:35–55. doi:10.1016/S0378-1119(02)01055-7.

    Article  PubMed  CAS  Google Scholar 

  32. Ortega S, Malumbres M, Barbacid M. Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim Biophys Acta. 2002;1602:73–87.

    PubMed  CAS  Google Scholar 

  33. Chen F, Li Y, Lu Z, Gao J, Chen J. Adenovirus-mediated Ink4a/ARF gene transfer significantly suppressed the growth of pancreatic carcinoma cells. Cancer Biol Ther. 2005;4:1348–1354.

    Article  PubMed  CAS  Google Scholar 

  34. Qian Q, Sham J, Che X, et al. Gene-viral vectors: a promising way to target tumor cells and express anticancer genes simultaneously. Chin Med J (Engl). 2002;115:1213–1217.

    CAS  Google Scholar 

  35. Hernandez-Alcoceba R, Pihalja M, Qian D, Clarke MF. New oncolytic adenoviruses with hypoxia- and estrogen receptor-regulated replication. Hum Gene Ther. 2002;13:1737–1750. doi:10.1089/104303402760293574.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Scientific Foundation of China (No. 30572149) and the Scientific and Technological Project of Zhejiang Province, China (No. 2006C30021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Su.

Additional information

Jumin Ma and Xiaoping He contributed equally to this work.

An erratum to this article can be found at http://dx.doi.org/10.1007/s10620-009-0827-z

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, J., He, X., Wang, W. et al. E2F Promoter-Regulated Oncolytic Adenovirus with p16 Gene Induces Cell Apoptosis and Exerts Antitumor Effect on Gastric Cancer. Dig Dis Sci 54, 1425–1431 (2009). https://doi.org/10.1007/s10620-008-0543-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-008-0543-0

Keywords

Navigation