Skip to main content
Log in

Derivation and Application of Some Fractional Black–Scholes Equations Driven by Fractional G-Brownian Motion

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

In this paper, a new concept for some stochastic process called fractional G-Brownian motion (fGBm) is developed and applied to the financial markets. Compared to the standard Brownian motion, fractional Brownian motion and G-Brownian motion, the fGBm can consider the long-range dependence and uncertain volatility simultaneously. Thus it generalizes the concepts of the former three processes, and can be a better alternative in real applications. Driven by the fGBm, a generalized fractional Black–Scholes equation (FBSE) for some European call option and put option is derived with the help of Taylor’s series of fractional order and the theory of absence of arbitrage. Meanwhile, some explicit option pricing formulas for the derived FBSE are also obtained, which generalize the classical Black–Scholes formulas for the prices of European options given by Black and Scholes in 1973.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avellaneda, M., Levy, A., & Paras, A. (1995). Pricing and hedging derivative securities in markets with uncertain volatilities. Applied Mathematical Finance, 2 (2), 73–88.

    Article  Google Scholar 

  • Biagini, F., Hu, Y., Oksendal, B., & Zhang, T. (2008). Stochastic calculus for fractional Brownian motion amd applications. London: Springer.

    Book  Google Scholar 

  • Björk, T., & Hult, H. (2005). A note on Wick products and the fractional Black–Scholes model. Finance and Stochastics, 9 (2), 197–209.

    Article  Google Scholar 

  • Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81 (3), 659–673.

    Article  Google Scholar 

  • Cartea, A., & del Castillo-Negrete, D. (2007). Fractional diffusion models of option prices in markets with jumps. Physica A, 374 (2), 749–763.

    Article  Google Scholar 

  • Cen, Z., Huang, J., Xu, A., & Le, A. (2018). Numerical approximation of a time-fractional Black–Scholes equation. Computers and Mathematics with Applications, 75 (8), 2874–2887.

    Article  Google Scholar 

  • Chen, W., Du, K., & Qiu, X. (2018). Analytic properties of American option prices under a modified Black–Scholes equation with spatial fractional derivatives. Physica A, 491, 37–44.

    Article  Google Scholar 

  • Chen, W., Xu, X., & Zhu, S. (2014). Analytically pricing European-style options under the modified Black–Scholes equation with a spatial-fractional derivative. Quarterly of Applied Mathematics, 72 (3), 597–611.

    Article  Google Scholar 

  • Chen, Z., & Epstein, L. (2002). Ambiguity, risk, and asset returns in continuous time. Econometrica, 70 (4), 1403–1443.

    Article  Google Scholar 

  • Denis, L., Hu, M., & Peng, S. (2011). Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion paths. Potential Analysis, 34 (2), 139–161.

    Article  Google Scholar 

  • Denis, L., & Martini, C. (2006). A theoretical framework for the pricing of contingent claims in the presence of model uncertainty. Annals of Applied Probability, 16 (2), 827–852.

    Article  Google Scholar 

  • Elliott, R. J., & Hoek, J. V. (2003). A general fractional white noise thoery and applications to finance. Mathematical Finance, 13 (2), 301–330.

    Article  Google Scholar 

  • Epstein, L. G., & Ji, S. (2013). Ambiguous volatility and asset pricing in continuous time. Review of Financial Studies, 26 (7), 1740–1786.

    Article  Google Scholar 

  • Fama, E. F. (1965). The behavior of stock market prices. Journal of Business, 38 (1), 34–105.

    Article  Google Scholar 

  • Golbabai, A., & Nikan, O. (2020). A computational method based on the moving least-squares approach for pricing double barrier options in a time-fractional Black–Scholes model. Computational Economics, 55 (1), 119–141.

    Article  Google Scholar 

  • Golbabai, A., Nikan, O., & Nikazad, T. (2019). Numerical analysis of time fractional Black–Scholes European option pricing model arising in financial market. Applied Mathematics and Computation, 38 (4), 173.

    Google Scholar 

  • Guo, C., Fang, S., He, Y. (2021). A generalized stochastic process: fractional G-Brownian motion. Under review.

  • Haq, S., & Hussain, M. (2018). Selection of shape parameter in radial basis functions for solution of time-fractional Black–Scholes models. Applied Mathematics and Computation, 335, 248–263.

    Article  Google Scholar 

  • Hu, Y., & Øksendal, B. (2003). Fractional white noise calculus and applications to finance. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 6 (1), 1–32.

    Article  Google Scholar 

  • Jumarie, G. (1993). Stochastic differential equations with fractional Brownian motion input. International Journal of Systems Science, 24 (6), 1113–1132.

    Article  Google Scholar 

  • Jumarie, G. (2005). On the representation of fractional Brownian motion as an integral with respect to (dt)$\alpha $. Applied Mathematics Letters, 18 (7), 739–748.

    Article  Google Scholar 

  • Jumarie, G. (2006a). Fractionalization of the complex-valued Brownian motion of order n using Riemann–Liouville derivative. Applications to mathe- matical finance and stochastic mechanics. Chaos, Solitons & Fractals, 28 (5), 1285–1305.

    Article  Google Scholar 

  • Jumarie, G. (2006b). Modified Riemann–Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Computers and Mathematics with Applications, 51 (9–10), 1367–1376.

    Article  Google Scholar 

  • Jumarie, G. (2008). Stock exchange fractional dynamics defined as fractional exponential growth driven by (usual) Gaussian white noise. Application to fractional Black–Scholes equations. Insurance: Mathematics and Economics, 42 (1), 271–287.

    Google Scholar 

  • Jumarie, G. (2010). Derivation and solutions of some fractional Black–Scholes equations in coarse-grained space and time. Application to Merton’s optimal portfolio. Computers & Mathematics with Applications, 59 (3), 1142–1164.

    Article  Google Scholar 

  • Klebaner, F. C. (2012). Introduction to stochastic calculus with applications. London: Imperial College Press.

    Book  Google Scholar 

  • Kolmogorov, A. N. (1940). Wienersche spiralen und einige andere interessante kurven im hilbertschen raum. Comptes Rendus de (Doklady) Akademii nauk URSS (N.S.), 26, 115–118.

    Google Scholar 

  • Liang, J., Wang, J., Zhang, W., Qiu, W., & Ren, F. (2010). Option pricing of a bi-fractional Black–Merton–Scholes model with the Hurst exponent H in $[\frac{1}{2},1]$. Applied Mathematics Letters, 23 (8), 859–863.

    Article  Google Scholar 

  • Liang, J., Wang, J., Zhang, W., Qiu, W., & Ren, F. (2010). The solutions to a bi-fractional Black–Scholes–Merton differential equation. International Journal of Pure and Applied Mathematics, 58 (1), 99–112.

    Google Scholar 

  • Lo, A. W., & MacKinlay, A. C. (1988). Stock market prices do not follow random walks: Evidence from a simple specification test. The Review of Financial Studies, 1 (1), 41–66.

    Article  Google Scholar 

  • Lyons, T. J. (1995). Uncertain volatility and the risk-free synthesis of derivatives. Applied Mathematical Finance, 2 (2), 117–133.

    Article  Google Scholar 

  • Mandelbrot, B. B., & Van Ness, J. W. (1968). Fractional Brownian motions, fractional noises and applications. SIAM Review, 10 (4), 422–437.

    Article  Google Scholar 

  • Miller, K. S., & Ross, B. (1993). An introduction to the fractional calculus and fractional differential equations. New York: Wiley.

    Google Scholar 

  • Necula, C. (2002). Option pricing in a fractional Brownian motion environment. Mathematical Reports, 2 (3), 259–273.

    Google Scholar 

  • Peng, S. (2007a). G-Brownian motion and dynamic risk measure under volatility uncertainty. (Preprint at arXiv:0711. 2834)

  • Peng, S. (2011). G-Gaussian processes under sublinear expectations and q-Brownian motion in quantum mechanics. (Preprint at arXiv:1105.1055)

  • Peng, S. (2005). Nonlinear expectations and nonlinear Markov chains. Chinese Annals of Mathematics, 26B (2), 159–184.

    Article  Google Scholar 

  • Peng, S. (2007). G-expectation, G-Brownian motion and related stochastic calculus of Itô’s type. In F. E. Benth (Ed.), Stochastic analysis and applications (pp. 541–567). Berlin: Springer.

    Chapter  Google Scholar 

  • Peng, S. (2008). Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation. Stochastic Processes and their Applications, 118 (12), 2223–2253.

    Article  Google Scholar 

  • Peng, S. (2019). Nonlinear expectations and stochastic calculus under uncertainty. Berlin: Springer.

    Book  Google Scholar 

  • Podlubny, I. (1999). Fractional differential equations. New York: Academic Press.

    Google Scholar 

  • Privault, N. (2013). Stochastic finance. An introduction with market examples. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Rogers, L. C. G. (1997). Arbitrage with fractional Brownian motion. Mathematical Finance, 7 (1), 95–105.

    Article  Google Scholar 

  • Sottinen, T. (2001). Fractional Brownian motion, random walks and binary market models. Finance and Stochastics, 5 (3), 343–355.

    Article  Google Scholar 

  • Soumana-Hima, A. (2017). Stochastic differential equations under g- expectation and applications. Rennes: Université Rennes.

    Google Scholar 

  • Sun, H. G., Zhang, Y., Baleanu, D., Chen, W., & Chen, Y. Q. (2018). A new collection of real world applications of fractional calculus in science and engineering. Communications in Nonlinear Science and Numerical Simulations, 64, 213–231.

    Article  Google Scholar 

  • Vorbrink, J. (2014). Financial markets with volatility uncertainty. Journal of Mathematical Economics, 53 (2), 64–78.

    Article  Google Scholar 

  • Wyss, W. (2000). The fractional Black–Scholes equation. Fractional Calculus and Applied Analysis, 3 (1), 51–61.

    Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (Nos. 72101061 and 71974038), and Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515011749).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaomei Fang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, C., Fang, S. & He, Y. Derivation and Application of Some Fractional Black–Scholes Equations Driven by Fractional G-Brownian Motion. Comput Econ 61, 1681–1705 (2023). https://doi.org/10.1007/s10614-022-10263-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-022-10263-5

Keywords

Navigation