Skip to main content
Log in

Generation of Nonhomogeneous Turbulent Velocity Fields by Modified Randomized Spectral Method

  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

A new version of the synthetic turbulent velocity generator is proposed for simulation of turbulent flows. The method is fully stochastic and generates a statistically anisotropic and nonhomogeneous random field, which provides the initial and boundary conditions for the deterministic eddy-resolving model of turbulence. The simulation method has been tested on a three-dimensional problem of developed turbulent channel flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Kraichnan, “Diffusion by a random velocity field,” Phys. Fluids, 13, No. 1, 22–31 (1970).

    Article  Google Scholar 

  2. D. Yu. Adam’yan, M. Kh. Strelets, and A. K. Travin, “An efficient method of synthetic turbulence generation on the LES inlet interfaces in the framework of combined RANS-LES approaches to turbulence computation,” Matem. Modelirovanie, 23, No. 7, 3–19 (2001).

    Google Scholar 

  3. M. L. Shur, P. R. Spalart, M. K. Strelets, and A. K. Travin, “Synthetic turbulence generators for RANS-LES interfaces in zonal simulations of aerodynamic and aeroacoustic problems,” Flow Turbulence Combust., 93, No. 1, 63–92 (2014).

    Article  Google Scholar 

  4. A. Duben and T. Kozubskaya, Evaluation of Quasi-One-Dimensional Unstructured Method for Jet Noise Prediction, AIAA J., (August 2019); doi:https://doi.org/10.2514/1.J058162.

  5. M. Klein, A. Sadiki, and J. Janicka, “A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations,” J. Comput. Phys., 186, No. 2, 652–665 (2003).

    Article  Google Scholar 

  6. D. Yu. Adam’yan and K. Travin, “Improved synthetic eddy generator for the specification of nonstationary inflow boundary conditions in turbulent flow calculations,” Teplofizika Vysokikh Temperatur, 49, No. 5, 728–736 (2011).

    Google Scholar 

  7. A. Smirnov, S. Shi, and I. Celik, “Random flow generation technique for large eddy simulations and particle-dynamics modeling,” J. Fluids Eng., 123, No. 2, 359–371 (2001).

    Article  Google Scholar 

  8. L. Davidson, Inlet Boundary Conditions for Embedded LES, First CEAS European Air and Space Conf. Berlin (2007).

    Google Scholar 

  9. O. Kurbanmuradov, K. Sabelfeld, and P. R. Kramer, “Randomized spectral and Fourier-wavelet methods for multidimensional Gaussian random vector fields,” J. Comput. Phys., 245, 218–234 (2013).

    Article  MathSciNet  Google Scholar 

  10. T. Saad, D. Cline, R. Stoll, and J. C. Sutherland, “Scalable tools for generating synthetic isotropic turbulence with arbitrary spectra,” AIAA J., 55, No. 18, 327–331 (2016).

    Google Scholar 

  11. N. S. Dhamankar, G. A. Blaisdell, and A. S. Lyrintzis, “Overview of turbulent inflow boundary conditions for large-eddy simulations,” AIAA J., 56, No. 4, 1317–1334 (2018).

    Article  Google Scholar 

  12. K. K. Sabelfeld, Monte Carlo Methods in Boundary Value Problems, Springer, New York (1991).

    Google Scholar 

  13. A. V. Aleksandrov, L. V. Dorodnitsyn, and A. P. Duben’, “Generation of three-dimensional homogeneous isotropic turbulent velocity fields by Randomized Spectral Method,” Matem. Modelirovanie, 31, No. 10, 49–62 (2019).

    Article  Google Scholar 

  14. R. Moser, J. Kim, and N. Mansour, “Direct numerical simulation of turbulent channel flow up to Reτ = 590,” Phys. Fluids, 11, No. 4, 943 (1999).

    Article  Google Scholar 

  15. A. S. Monin and A. M. Yaglom, Statistical Hydromechanics, the Mechanics of Turbulence [in Russian], Part 2, Nauka, Moscow (1967).

    Google Scholar 

  16. O. A. Kurbanmuradov, “Weak convergence of randomized spectral models of Gaussian random vector fields,” Bull. Nov. Comp. Center, Num. Anal., 19-25 (1993).

  17. I. V. Abalakin, P. A. Bakhvalov, A. V. Gorobets, A. P. Duben’, and T. K. Kozubskaya, “Parallel research code NOISEtte for largescale CFD and CAA simulations,” Vychisl. Metody Programm., 13, No. 3, 110–125 (2012).

    Google Scholar 

  18. P. R. Spalart and S. R. Allmaras, A One-Equation Turbulence Model for Aerodynamic Flows, AIAA Paper 92-0439 (1992).

  19. M. L. Shur, P. R. Spalart, M. Kh. Strelets, and A. K. Travin, “A hybrid RANS-LES approach with delayed-DES and wall-modeled LES capabilities,” Int. J. Heat Fluid Flow, 29, No. 6, 1638–1649 (2008).

    Article  Google Scholar 

  20. P. A. Bakhvalov, I. V. Abalakin, and T. K. Kozubskaya, “Edge-based reconstruction schemes for unstructured tetrahedral meshes,” Int. J. Numer. Methods Fluids, 81, No. 6, 331–356 (2016).

    Article  MathSciNet  Google Scholar 

  21. F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA J., 32, No. 8, 1598–1605 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Aleksandrov.

Additional information

Translated from Prikladnaya Matematika i Informatika, No. 63, 2020, pp. 22–35.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrov, A.V., Dorodnitsyn, L.V., Duben’, A.P. et al. Generation of Nonhomogeneous Turbulent Velocity Fields by Modified Randomized Spectral Method. Comput Math Model 31, 308–319 (2020). https://doi.org/10.1007/s10598-020-09493-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10598-020-09493-9

Keywords

Navigation