Skip to main content
Log in

Implementation of the One-Step One-Hybrid Block Method on the Nonlinear Equation of a Circular Sector Oscillator

  • III. NUMERICAL METHODS
  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

Solving nonlinear differential equation of a circular sector oscillator is of a scientific importance. Thus, to solve such equations, a single- step implicit block method involving one hybrid point with the introduction of a third derivative is proposed. To derive this method, the approximate basis solution is interpolated at {xn, xn + 3/5} while its second and third derivatives are collocated at all points {xn, xn + 3/5, xn + 1}on the integrated interval of approximation. Numerical results are presented in the form of table and graphs for the variation of different physical parameters. The study reveals that the proposed hybrid block method is zero stable, which proves that it is convergent beside a significant interval of absolute stability, thus making it suitable for solving stiff ODEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Singh, D. Kumar, and J. Nieto, “A reliable algorithm for a local fractional Tricomi equation arising in fractal transonic flow,” Entropy,18, 1–206 (2016).

    MathSciNet  Google Scholar 

  2. D. Kumar, J. Singh, and D. Baleanu, “A hybrid computational approach for Klein–Gordon equations on Cantor sets,” Nonlinear Dynam.,87, 511–217 (2017).

    MathSciNet  MATH  Google Scholar 

  3. W. X. Ma, H. Wu, and J. He, “Partial differential equations possessing Frobenius integrable decompositions,” Phys. Lett. A,364, 29–32 (2007).

    MathSciNet  MATH  Google Scholar 

  4. S. T. Mohyud-Din, A. Yıldırım, and S. Sarıaydın, “Numerical soliton solution of the Kaup–Kupershmidt equation,” Int. J. Numer. Methods Heat Fluid Flow,21, 272–281(2011).

    MathSciNet  MATH  Google Scholar 

  5. J. Raza, A. M. Rohni and Z. Omar, “MHD flow and heat transfer of Cu–water nanofluid in a semiporous channel with stretching walls,” Int. J. of Heat Mass Transf.,103, 336–340 (2016).

    Google Scholar 

  6. J. Raza, A. M. Rohni, and Z. Omar, “Rheology of micropolar fluid in a channel with changing walls: investigation of multiple solutions,” J. Mol. Liq.,223, 890–90 (2016).

    Google Scholar 

  7. J. Raza, A. M. Rohni, and Z. Omar, “A note on some solutions of copper-water (Cu-water) nanofluids in a channel with slowly expanding or contracting walls with heat transfer,” Math. Comput. Appl.,21, 1–24 (2016).

    MathSciNet  Google Scholar 

  8. J. Raza, A. M. Rohni, Z. Omar, and M. Awais, “Rheology of the Cu-H2O nanofluid in porous channel with heat transfer: Multiple solution,” Physic. E: Low-dimension. Syst. Nanostruct.,86, 248–252 (2017).

    Google Scholar 

  9. S. Hamrelaine, F. Mebarek-Oudina, and M. R. Sari, “Analysis of MHD Jeffery Hamel flow with suction/injection by homotopy analysis method,” J. Adv. Res. Fluid Mech. Ther. Sciences,58, No. 2, 173–186 (2019).

    Google Scholar 

  10. J. Raza, A. M. Rohni, and Z. Omar, “Multiple solution of mixed convective MHD Casson fluid flow in a channel,” J. Appl. Math.,201, 1–10 (2016).

    MathSciNet  Google Scholar 

  11. R. U. Haq, S. Nadeem, Z. H. Khan, and N. F. M. Noor, “MHD squeezed flow of water functionalized metallic nanoparticles over a sensor surface,” Phys. E: Low-dimension. Syst. Nanostruct.,73, 45–53 (2015).

    Google Scholar 

  12. O. A. Bég, M. F. M. Basir, M. J. Uddin, and A. M. Ismail “Numerical study of slip effects on unsteady asymmetric bioconvective nanofluid flow in a poruos microchannel with an expanding/contracting upper wall using Buongiorno’s model,” J. Mech. Medic. Biol.,171, 750059 (2017).

    Google Scholar 

  13. J. Raza, A. M. Rohni, Z. Omar, and M. Awis, “Heat and mass transfer analysis of MHD nanofluid flow in a rotating channel with slip effects,” J. Mol. Liquids,219, 703–708 (2016).

    Google Scholar 

  14. J. Raza, F. Mebarek-Oudina, and B. Mahanthesh, “Multiple slip effects on MHD non-Newtonian nanofluid flow over a nonlinear permeable elongated sheet: Numerical and statistical analysis,” Multidisc. Model. Mater. Struct.,15, No. 5, 871–894 (2019).

    Google Scholar 

  15. J. Raza, A. M. Rohni, and Z. Omar, “Unsteady flow of a casson fluid between two orthogonally moving porous disks: a numerical investigation,” Commun. in Numer. Anal.,2, 109–124 (2017).

    MathSciNet  Google Scholar 

  16. J. Raza, F. Mebarek-Oudina, and A. J. Chamkha, “Magnetohydrodynamic flow of molybdenum disulfide nanofluid in a channel with shape effects,” Multidisc. Model. Mater. Struct.,15, No. 4, 737–757 (2019).

    Google Scholar 

  17. W. A. Khan, Z. H. Khan, and R. U. Haq, “Flow and heat transfer of ferrofluids over a flat plate with uniform heat flux,” Eur. Phys. J. Plus,130, 86 (2015).

    Google Scholar 

  18. J. Raza, F. Mebarek-Oudina, and B. Mahanthesh “Magnetohydrodynamic flow of nano Williamson fluid generated by stretching plate with multiple slips,” Multidisc. Model. Mater. Struct.,15, No. 5, 871–894 (2019).

    Google Scholar 

  19. J. Reza, F. Mebarek-Oudina, and O. D. makinde “MHD slip flow of Cu-kerosene nanofluid in a channel with stretching walls using 3-stage Lobatto IIIA formula,” Defect Diffus. Forum,387, 51–62 (2018).

  20. A. J. Chamkha, C. Issa, and K. Khanafer, “Natural Convection from an Inclined Plate Embedded in a Variable Porosity Porous Medium Due to Solar Radiation,” Int. J. Ther. Sci.,41, 73–81 (2002).

    MATH  Google Scholar 

  21. A. J. Chamkha, A. Al-Mudhaf, and I. Pop, “Effect of heat generation or absorption on thermophoretic free convection boundary layer from a vertical flat plate embedded in a porous medium,” Int. Comm. Heat Mass Tran.,33, 1096–1102 (2006).

    Google Scholar 

  22. A. J. Chamkha, “Hydromagnetic natural convection from an isothermal inclined surface adjacent to a thermally stratified porous medium,” Int. J. Eng. Sci.,35, 975–986 (1997).

    MathSciNet  MATH  Google Scholar 

  23. F. Mebarek-Oudina and R. Bessaïh, “Stabilité magnétohydrodynamique des écoulements de convection naturelle dans une configuration cylindrique de type czochralski,” Société Française de Thermique,1, 451–457 (2007).

    Google Scholar 

  24. F. Mebarek-Oudina and R. Bessaïh, “Numerical modeling of MHD stability in a cylindrical configuration,” J. Franklin Inst.,351, No. 2, 667–681 (2014).

    MathSciNet  MATH  Google Scholar 

  25. F. Mebarek-Oudina and R. Bessaih, “Oscillatory magnetohydrodynamic natural convection of liquid metal between vertical coaxial cylinders,” J. Appl. Fluid Mech.,9, No. 4, 1655–1665 (2016).

    Google Scholar 

  26. F. Mebarek-Oudina, “Numerical modeling of the hydrodynamic stability in vertical annulus with heat source of different lengths,” Eng. Sci. and Technol.,20, No. 4, 1324–1333 (2017).

    Google Scholar 

  27. F. Mebarek-Oudina and R. Bessaih, “oscillatory mixed convection flow in a cylindrical container with rotating disk under axial magnetic field and various wall electrical conductivity,” Int. Rev. Phys.,4, No. 1, 45–51 (2010).

    Google Scholar 

  28. F. Mebarek-Oudina and R. Bessaïh, “Magnetohydrodynamic stability of natural convection flows in Czochralski crystal growth,” World J. Eng.,4, No. 4, 15–22 (2007).

    Google Scholar 

  29. F. Mebarek-Oudina, “Convective heat transfer of titania nanofluids of different base fluids in cylindrical annulus with discrete heat source,” Heat Tran. Asian Res.,48, No. 1, 135–147 (2019).

    Google Scholar 

  30. F. Mebarek-Oudina and O. D. Makinde, “Numerical simulation of oscillator MHD natural convection in cylindrical annulus prandtl number effect,” Defect Diffus. Forum,387, 417–427 (2018).

    Google Scholar 

  31. S. Gourari, F. Mebarek-Oudina, A. K. Hussein, L. Kolsi, W. Hassen, O. Younis, “Numerical study of natural convection between two coaxial inclined cylinders,” Int. J. Heat Tech.,37, No. 3, 779–786 (2019).

    Google Scholar 

  32. F. Mebarek-Oudina and R. Bessaih, “Numerical simulation of natural convection heat transfer of copper-water nanofluid in a vertical cylindrical annulus with heat sources,” Thermophys. Aeromech.,26, No. 3, 325–334 (2019).

    Google Scholar 

  33. H. laouira. F. Mebarek-Oudina, A. K. Hussein, L. Kolsi, A. Merah and O. Younis, Heat Transfer Inside a Horizontal Channel with an Open Trapezoidal Enclosure Subjected to a Heat Source of Different Lengths, Heat Tran. Asian Res., (2019); https://doi.org/10.1002/htj.21618.

  34. R. F. Abdelrahim and Z. Omar, “Direct solution of second-order ordinary differential equation using a single-step hybrid block method of order five,” Math. Comput. Appl.,21, 1–12 (2016).

    MathSciNet  Google Scholar 

  35. R. K. Sahi, S. N. Jator, and N. A. Khan, “A Simpson’s-type second derivative method for stiff systems,” Int. J. Pure Appl. Math.,81, 619–633 (2012).

    MATH  Google Scholar 

  36. C. W. Gear, “Hybrid methods for initial value problems in ordinary differential equations,” J. Soci. Ind. Appl. Math., Series B: Numerical Analysis,2, 69–86 (1956).

  37. G. Dahlquist, “Convergence and stability in the numerical integration of ordinary differential equations,” Math. Scand.,4, 33–53 (1956).

    MathSciNet  MATH  Google Scholar 

  38. S. N. Jator, “Solving second order initial value problems by a hybrid multistep method without predictors,” Appl. Math. Comput.,217, 4036–4046 (2010).

    MathSciNet  MATH  Google Scholar 

  39. B. Mahanthesh, G Lorenzini, F. Mebarek-Oudina, and I. L. Animasaun, “Significance of exponential space- and thermal-dependent heat source effects on nanofluid flow due to radially elongated disk with Coriolis and Lorentz forces,” J. Therm. Anal. Calorim, (2019); https://doi.org/10.1007/s10973-019-08985-0.

  40. W. H. Enright, “Second derivative multistep methods for stiff ordinary differential equations,” SIAM J. Numer. Anal.,11, 321–331 (1974).

    MathSciNet  MATH  Google Scholar 

  41. W. B. Gragg and H. J. Stetter, “Generalized multistep predictor-corrector methods,” J.o ACM,11, 188–209 (1964).

  42. S. Jator, A. Akinfenwa, S. A. Okunuga, and A. B. Sofoluwe, “High-order continuous third derivative formulas with block extensions for y″ = f (x, y, y′),” Int. J. Comput. Math.,90, 1899–1914 (2013).

  43. G. G. Dahlquist, “Numerical integration of ordinary differential equations,” Math. Scand.,4, 69–86 (1956).

    MATH  Google Scholar 

  44. F. Ngwane and S. Jator, “Block hybrid-second derivative method for stiff systems,” Int. J. Pure Appl. Math.,80, 543–559 (2012).

    MATH  Google Scholar 

  45. Z. Omar and M. F. Alkansassbeh, “Generalized one-step third derivative implicit hybrid block method for the direct solution of second order ordinary differential equation,” Appl. Math. Sci.,10, 417–430 (2016).

    Google Scholar 

  46. Z. Omar and M. Alkasassbeh, “Generalized one-step implicit hybrid block method for second order Dirichlet and Neumann boundary value problems,” Far East J. Math. Sci.,102, 2233–2252 (2017).

    Google Scholar 

  47. M. Alkasassbeh, Z. Omar, F. Mebarek-Oudina, J. Raza, and A. J. Chamkha, “Heat transfer study of convective fin with temperature-dependent internal heat generation by hybrid block method,” Heat Transf.-Asian Res.,48, No. 4, 1225–1244 (2019).

    Google Scholar 

  48. P. Henrici, Discrete Variable Methods in Ordinary Differential Equations, John Wiley, New York (1962).

  49. J. Lambert, Computational Methods in Ordinary Differential Equations, John Wiley, Chichester, West Sussex (1973).

  50. H. Mirgolbabaee, S. T. Ledari, N. M. Zadeh, and D. D. Ganji, “Investigation of the nonlinear equation of the circular sector oscillator by Akbari-Ganji’s method,” J. Taibah Univ. Sci.,11, 1110–1121 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Mebarek-Oudina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhan, M., Omar, Z., Mebarek-Oudina, F. et al. Implementation of the One-Step One-Hybrid Block Method on the Nonlinear Equation of a Circular Sector Oscillator. Comput Math Model 31, 116–132 (2020). https://doi.org/10.1007/s10598-020-09480-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10598-020-09480-0

Keywords

Navigation