Skip to main content
Log in

Optimal Control Problems for a Mathematical Model of the Treatment of Psoriasis

  • II. MATHEMATICAL MODELING
  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

A Correction to this article was published on 01 January 2020

This article has been updated

We consider a mathematical model of the treatment of psoriasis on a finite time interval. The model consists of three nonlinear differential equations describing the interrelationships between the concentrations of T-lymphocytes, keratinocytes, and dendritic cells. The model incorporates two bounded timedependent control functions, one describing the suppression of the interaction between T-lymphocytes and keratinocytes and the other the suppression of the interaction between T-lymphocytes and dendritic cells by medication. For this model, we minimize the weighted sum of the total keratinocyte concentration and the total cost of treatment. This weighted sum is expressed as an integral over the sum of the squared controls. Pontryagin’s maximum principle is applied to find the properties of the optimal controls in this problem. The specific controls are determined for various parameter values in the BOCOP-2.0.5 program environment. The numerical results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 03 April 2020

    To the article ���Optimal Control Problems for a Mathematical Model of the Treatment of Psoriasis,��� by N. L. Grigorenko, ��. V. Grigorieva, P. K. Roi, and E. N. Khailov, Vol. 30, No. 4, pp. 352���363, October, 2019.

References

  1. F. O. Nestle, D. H. Kaplan, and J. Barker, “Psoriasis,” New Engl. J. Med.,361, No. 5, 496–509 (2009).

    Article  Google Scholar 

  2. A. B. Kimball, C. Jacobson, S. Weiss, M. G. Vreeland, and Y. Wu, “The psychosocial burden of psoriasis,” Am. J. Clin. Dermatol.,6, No. 6, 383–392 (2005).

    Article  Google Scholar 

  3. S. L. Mehlis and K. B. Gordon, “The immunology of psoriasis and biologic immunotherapy,” J. Am. Acad. Dermatol.,49, No. 2, 44–50 (2003).

    Article  Google Scholar 

  4. J. E. Gudjonsson, A. Johnston, H. Sigmundsdottir, and H. Valdimarsson, “Immunopathogenic mechanisms in psoriasis,” Clin. Exp. Immunol.,135, No. 1, 1–8 (2004).

    Article  Google Scholar 

  5. A. A. Kubanova, A. A. Kubanov, J. F. Nicolas, L. Puig, J. Prinz, O. R. Katunina, and L. F. Znamenskaya, “Immune mechanisms in psoriasis: New biotherapy strategies,” Vestn. Dermatol. Venerol.,1, 35–47 (2010).

    Google Scholar 

  6. M. A. Lowes, M. Suarez-Farinas, and J. G. Krueger, “Immunology of psoriasis,” Ann. Rev. Immunol.,32, 227–255 (2014).

    Article  Google Scholar 

  7. H. B. Oza, R. Pandey, D. Roper, Y. Al-Nuaimi, S. K. Spurgeon, and M. Goodfellow, “Modelling and finite-time stability analysis of psoriasis pathogenesis,” Int. J. Control,90, No. 8, 1664–1677 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Zhang, W. Hou, L. Henrot, S. Schnebert, M. Dumas, C. Heusele, and J. Yang, “Modelling epidermis homoeostasis and psoriasis pathogenesis,” Journal of Royal Society Interface,12, 1–22 (2015).

    Article  Google Scholar 

  9. N. J. Savill, “Mathematical models of hierarchically structured cell populations under equilibrium with application to the epidermis,” Cell Proliferat.,36, No. 1, 1–26 (2003).

    Article  Google Scholar 

  10. G. Niels and N. Karsten, “Simulating psoriasis by altering transit amplifying cells,” Bioinformatics,23, No. 11, 1309–1312 (2007).

    Article  Google Scholar 

  11. M. V. Laptev and N. K. Nikulin, “Numerical modeling of mutual synchronization of auto-oscillations of epidermal proliferative activity in lesions of psoriasis skin,” Biophysics,54, 519–524 (2009).

    Article  Google Scholar 

  12. N. V. Valeyev, C. Hundhausen, Y. Umezawa, N. V. Kotov, G. Williams, A. Clop, C. Ainali, G. Ouzounis, S. Tsoka, F. O. Nestle, “A systems model for immune cell interactions unravels the mechanism of inflammation in human skin,” PLoS Comput. Biology,6, No. e10011024, 1–22 (2010).

    Google Scholar 

  13. A. Gandolfi, M. Iannelli, and G. Marinoschi, “An age-structured model of epidermis growth,” J. Math. Biol.,62, No. 1, 111–141 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Chattopadhyay and N. Hui, “Immunopathogenesis in psoriasis through a density-type mathematical model,” WSEAS Trans. on Math.,11, 440–450 (2012).

    Google Scholar 

  15. P. K. Roy and A. Datta, “Negative feedback control may regulate cytokines effect during growth of keratinocytes in the chronic plaque of psoriasis: a mathematical study,” Int. J. Appl. Math.,25, No. 2, 233–254 (2012).

    MathSciNet  MATH  Google Scholar 

  16. X. Cao, A. Datta, F. Al Basir, and P. K. Roy, “Fractional-order model of the disease psoriasis: a control based mathematical approach,” J. Syst. Sci. Complex.,29, 1565–1584 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Datta and P. K. Roy, “T-cell proliferation on immunopathogenic mechanism of psoriasis: a control based theoretical approach,” Control Cybern.,42, No. 3, 365–386 (2013).

    MathSciNet  MATH  Google Scholar 

  18. P. K. Roy and A. Datta, “Impact of cytokine release in psoriasis: a control based mathematical approach,” J. Non. Evolution Equat. and Appl.,2013, No. 3, 23–42 (2013).

    MathSciNet  MATH  Google Scholar 

  19. A. Datta, X.-Z. Li, and P. K. Roy, “Drug therapy between T-cells and DCs reduces the excess production of keratinocytes: causal effect of psoriasis,” Math. Sci. Intern. Res. J.,3, No. 1, 452–456 (2014).

    Google Scholar 

  20. E. Grigorieva and E. Khailov, “Optimal strategies for psoriasis treatment,” MDPI Math. and Comp. Analysis,23, 1–30 (2018).

    MathSciNet  Google Scholar 

  21. E. Grigorieva and E. Khailov, “Chattering and its approximation in control of psoriasis treatment,” Discrete Cont. Dyn.-B,24, No. 5, 2251–2280 (2019).

    MathSciNet  MATH  Google Scholar 

  22. P. K. Roy, J. Bhadra, and B. Chattopadhyay, “Mathematical modeling on immunopathogenesis in chronic plaque of psoriasis: a theoretical study,” Lecture Notes in Eng. and Comp. Sci.,1, 550–555 (2010).

    Google Scholar 

  23. A. Datta, D. K. Kesh, and P. K. Roy, “Effect of CD4+T-cells and CD8+T-cells on psoriasis: a mathematical study, “Imhotep Math. Proc.,3, No. 1, 1–11 (2016).

    Google Scholar 

  24. E. B. Lee and L. Marcus, Foundations of Optimal Control Theory [Russian translation], Nauka, Moscow (1972).

  25. L. S. Pontry;agin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, Mathematical Theory of Optimal Processes [in Russian], Nauka, Moscow (1961).

  26. H. Schattler and U. Ledzewicz, Optimal Control for Mathematical Models of Cancer Therapies. An Application of Geometric Methods, Springer, New York (2015).

    Book  MATH  Google Scholar 

  27. F. Bonnans, P. Martinon, D. Giorgi, V. Grelard, S. Maindrault, O. Tissot, and J. Liu, BOCOP 2.0.5 – User Guide (February 8, 2017) [http://bocop.org].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Grigorenko.

Additional information

Translated from Prikladnaya Matematika i Informatika, No. 61, 2019, pp. 28–41.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigorenko, N.L., Grigorieva, É.V., Roi, P.K. et al. Optimal Control Problems for a Mathematical Model of the Treatment of Psoriasis. Comput Math Model 30, 352–363 (2019). https://doi.org/10.1007/s10598-019-09461-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10598-019-09461-y

Keywords

Navigation