Skip to main content

Advertisement

Log in

Vertically integrated dual-continuum models for CO2 injection in fractured geological formations

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Various modeling approaches, including fully three-dimensional (3D) models and vertical-equilibrium (VE) models, have been used to study the large-scale storage of carbon dioxide (CO2) in deep saline aquifers. 3D models solve the governing flow equations in three spatial dimensions to simulate migration of CO2 and brine in the geological formation. VE models assume rapid and complete buoyant segregation of the two fluid phases, resulting in vertical pressure equilibrium and allowing closed-form integration of the governing equations in the vertical dimension. This reduction in dimensionality makes VE models computationally much more efficient, but the associated assumptions restrict the applicability of VE models to geological formations with moderate to high permeability. In the present work, we extend the VE models to simulate CO2 storage in fractured deep saline aquifers in the context of dual-continuum modeling, where fractures and rock matrix are treated as porous media continua with different permeability and porosity. The high permeability of fractures makes the VE model appropriate for the fracture domain, thereby leading to a VE dual-continuum model for the dual continua. The transfer of fluid mass between fractures and rock matrix is represented by a mass transfer function connecting the two continua, with a modified transfer function for the VE model based on vertical integration. Comparison of the new model with a 3D dual-continuum model shows that the new model provides comparable numerical results while being much more computationally efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Celia, M.A.: Geological storage of captured carbon dioxide as a large-scale carbon mitigation option. Water. Resour. Res. 53(5), 3527–3533 (2017)

    Article  Google Scholar 

  2. International Energy Agency (IEA): Energy technology perspectives 2017. http://www.iea.org/etp2017/summary (2017). Accessed 30 January 2018

  3. United Nations Framework Convention on Climate Change (UNFCCC): The Paris Agreement. http://unfccc.int/paris_agreement/items/9485.php (2017). Accessed 30 January 2018

  4. Intergovernmental Panel on Climate Change (IPCC): Special report on carbon dioxide capture and storage, paper presented at Working Group III of the Intergovernmental Panel on Climate Change, 442 pp. Cambridge Univ. Press, Cambridge (2005)

  5. Iding, M., Ringrose, P.: Evaluating the impact of fractures on the performance of the In Salah CO2 storage site. Int. J. Greenh. Gas Control 4(2), 242–248 (2010)

    Article  Google Scholar 

  6. Verdon, J.P., Kendall, J., Stork, A.L., Chadwick, R.A., White, D.J., Bissell, R.C.: Comparison of geomechanical deformation induced by megatonne-scale CO2 storage at Sleipner, Weyburn, and In Salah. Proc. Natl. Acad. Sci. U. S. A. 110(30), E2762–E2771 (2013)

    Article  Google Scholar 

  7. Li, C., Zhang, K., Wang, Y., Guo, C., Maggia, F.: Experimental and numerical analysis of reservoir performance for geological CO2 storage in the Ordos Basin in China. Int. J. Greenh. Gas Control 45, 216–232 (2016)

    Article  Google Scholar 

  8. Li, X., Li, Q., Bai, B., Wei, N., Yuan, W.: The geomechanics of Shenhua carbon dioxide capture and storage (CCS) demonstration project in Ordos Basin. China. J. Rock Mech. Geotech. Eng. 8(6), 948–966 (2016)

    Article  Google Scholar 

  9. Kazemi, H., Merrill, L.S., Porterfield, K.L., Zeman, P.R.: Numerical simulation of water–oil flow in naturally fractured reservoirs. Soc. Pet. Eng. J. 16(6), 317–326 (1976)

    Article  Google Scholar 

  10. Azom, P.N., Javadpour, F.: Dual-continuum modeling of shale and tight gas reservoirs (SPE159584). SPE Annual Technical Conference and Exhibition, San Antonio (2012)

    Google Scholar 

  11. Festoy, S., Van Golf-Racht, T.D.: Gas gravity drainage in fractured reservoirs through new dual-continuum approach. SPE Reservoir Eng. 4(3), 271–278 (1989)

    Article  Google Scholar 

  12. Pruess, K., Narasimhan, T.N.: A practical method for modeling fluid and heat flow in fractured porous media. Soc. Pet. Eng. J. 25(1), 14–26 (1985)

    Article  Google Scholar 

  13. Gilman, J.R.: An efficient finite-difference method for simulating phase segregation in the matrix blocks in double-porosity reservoirs. SPE Reservoir Eng. 1(4), 403–413 (1986)

    Article  Google Scholar 

  14. Gong, B., Karimi-Fard, M., Durlofsky, L.J.: Upscaling discrete fracture characterizations to dual-porosity, dual-permeability models for efficient simulation of flow with strong gravitational effects. SPE J. 13(1), 58–67 (2008)

    Article  Google Scholar 

  15. van Heel, A.P., Boerrigter, P.M., van Dorp, J.J.: Thermal and hydraulic matrix-fracture interaction in dual-permeability simulation. SPE Reservoir Eva. Eng. 11(4), 735–749 (2008)

    Article  Google Scholar 

  16. Fuentes-Cruz, G., Valko, P.P.: Revisiting the dual-porosity/dual-permeability modeling of unconventional reservoirs: the induced-interporosity flow field. SPE J. 20(1), 125–141 (2015)

    Article  Google Scholar 

  17. Gerke, H.H., van Genuchten, M.T.: A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media. Water. Resour. Res. 29(2), 305–319 (1993)

    Article  Google Scholar 

  18. Bibby, R.: Mass transport of solutes in dual-porosity media. Water. Resour. Res. 17(4), 1075–1081 (1981)

    Article  Google Scholar 

  19. Coppola, A., Gerke, H.H., Comegna, A., Basile, A., Comegna, V.: Dual-permeability model for flow in shrinking soil with dominant horizontal deformation. Water. Resour. Res. 48(8), W08527 (2012)

    Article  Google Scholar 

  20. Duguid, J.O., Lee, P.C.Y.: Flow in fractured porous media. Water. Resour. Res. 13(3), 558–566 (1977)

    Article  Google Scholar 

  21. Jarvis, N.J., Jansson, P.-E., Dik, P.E., Messing, I.: Modeling water and solute transport in marcoporous soil. I. Model description and sensitivity analysis. J. Soil Sci. 42(1), 59–70 (1991)

    Article  Google Scholar 

  22. Vogel, T., Gerke, H.H., Zhang, R., van Genhchten, M.T.: Modeling flow and transport in a two-dimensional dual-permeability system with spatially variable hydraulic properties. J. Hydrol. 238(1–2), 78–89 (2000)

    Article  Google Scholar 

  23. Bandilla, K.W., Celia, M.A., Birkholzer, J.T., Cihan, A., Leister, E.C.: Multiphase modeling of geologic carbon sequestration in saline aquifers. Groundwater. 53(3), 362–377 (2015)

    Article  Google Scholar 

  24. Celia, M.A., Bachu, S., Nordbotten, J.M., Bandilla, K.W.: Status of CO2 storage in deep saline aquifers with emphasis on modeling approaches and practical simulations. Water. Resour. Res. 51(9), 6846–6892 (2015)

    Article  Google Scholar 

  25. Nordbotten, J.M., Celia, M.A.: Similarity solutions for fluid injection into confined aquifers. J. Fluid Mech. 561, 307–327 (2006)

    Article  Google Scholar 

  26. Hesse, M.A., Tchelepi, H.A., Cantwell, B.J., Orr, F.M.: Gravity currents in horizontal porous layers: transition from early to late self-similarity. J. Fluid Mech. 577, 363–383 (2007)

    Article  Google Scholar 

  27. Hesse, M.A., Orr, F.M., Tchelepi, H.A.: Gravity currents with residual trapping. J. Fluid Mech. 611, 35–60 (2008)

    Article  Google Scholar 

  28. Juanes, R., MacMinn, C., Szulczewski, M.: The footprint of the CO2 plume during carbon dioxide storage in saline aquifers: storage efficiency for capillary trapping at the basin scale. Transp. Porous Media 82(1), 19–30 (2010)

    Article  Google Scholar 

  29. Macminn, C.W., Szulczewshi, M.L., Juanes, R.: CO2 migration in saline aquifers. Part 1. Capillary trapping under slope and groundwater flow. J. Fluid Mech. 662, 329–351 (2010)

    Article  Google Scholar 

  30. Golding, M.J., Neufield, J.A., Hesse, M.A., Huppert, H.E.: Two-phase gravity currents in porous media. J. Fluid Mech. 678, 248–270 (2011)

    Article  Google Scholar 

  31. Macminn, C.W., Juanes, R.: Buoyant currents arrested by convective mixing. Geophys. Res. Lett. 40(10), 2017–2022 (2013)

    Article  Google Scholar 

  32. Zheng, Z., Guo, B., Christov, I.C., Celia, M.A., Stone, H.A.: Flow regimes for fluid injection into a confined porous medium. J. Fluid Mech. 767, 881–909 (2015)

    Article  Google Scholar 

  33. Guo, B., Zheng, Z., Celia, M.A., Stone, H.A.: Axisymmetric flows from fluid injection into a confined porous medium. Phys. Fluids 28, 022107 (2016)

    Article  Google Scholar 

  34. Nordbotten, J.M., Kavetski, D., Celia, M.A., Bachu, S.: Model for CO2 leakage including multiple geological layers and multiple leaky wells. Environ. Sci. Technol. 43(3), 743–749 (2009)

    Article  Google Scholar 

  35. Celia, M.A., Nordbotten, J.M., Court, B., Dobossy, M., Bachu, S.: Field-scale application of a semi-analytical model for estimation of CO2 and brine leakage along old wells. Int. J. Greenh. Gas Control 5(2), 257–269 (2011)

    Article  Google Scholar 

  36. Gasda, S.E., Nordbotten, J.M., Celia, M.A.: Vertical equilibrium with sub-scale analytical methods for geological CO2 sequestration. Comput. Geosci. 13, 469–481 (2009)

    Article  Google Scholar 

  37. Geiger, S., Emmanuel, S.: Non-fourier thermal transport in fractured geological media. Water. Resour. Res. 46(7), W07504 (2010)

    Article  Google Scholar 

  38. Gasda, S.E., Nordbotten, J.M., Celia, J.M.: Vertically-averaged approaches for CO2 migration with solubility trapping. Water. Resour. Res. 47(5), W05528 (2011)

    Article  Google Scholar 

  39. Bandilla, K.W., Celia, M.A., Elliot, T.R., Person, M., Ellet, K.M., Rupp, J.A., Gable, C., Zhang, Y.: Modeling carbon sequestration in the Illinois Basin using a vertically-integrated approach. Comput. Vis. Sci. 15(1), 39–51 (2012)

    Article  Google Scholar 

  40. Lake, L.W.: Enhanced oil recovery. Prentice-Hall, Upper Saddle River (1989)

    Google Scholar 

  41. Yortsos, Y.C.: A theoretical analysis of vertical flow equilibrium. Transp. Porous Media 18(2), 107–129 (1995)

    Article  Google Scholar 

  42. de Loubens, R., Ramakrishnan, T.S.: Analysis and computation of gravity-induced migration in porous media. J. Fluid Mech. 675, 60–86 (2011)

    Article  Google Scholar 

  43. Nordbotten, J.M., Dahle, H.K.: Impact of the capillary fringe in vertically integrated models for CO2 storage. Water. Resour. Res. 47(2), W02537 (2011)

    Article  Google Scholar 

  44. Nordbotten, J.M., Celia, M.A.: Geological Storage of CO2: Modeling Approaches for Large-Scale Simulation. Wiley, Hoboken (2012)

    Google Scholar 

  45. Hao, Y., Fu, P., Carrigan, C.R.: Application of a dual-continuum model for simulation of fluid flow and heat transfer in fractured geothermal reservoirs (SGP-TR-198). Proceedings, Thirty-Eighth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California USA (2013)

  46. Warren, J.E., Root, P.J.: The behavior of naturally fractured reservoirs. Soc. Pet. Eng. J. 3(3), 245–255 (1963)

    Article  Google Scholar 

  47. Gilman, J.R., Kazemi, H.: Improved calculations for viscous and gravity displacement in matrix blocks in dual-porosity simulators. J. Pet. Technol. 40(1), 60–70 (1988)

    Article  Google Scholar 

  48. Barenblatt, G.I., Zheltov, I.P., Kochina, I.N.: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. PMM (Sov. Appl. Math. Mech.) 24(5), 852–864 (1960)

    Google Scholar 

  49. Ramirez, B., Kazemi, H., Al-Kobaisi, M., Ozkan, E., Atan, S.: A critical review for proper use of water/oil/gas transfer functions in dual-porosity naturally fractured reservoirs: part I. SPE Reservoir Eva. Eng. 12(2), 200–210 (2009)

    Article  Google Scholar 

  50. Al-Kobaisi, M., Kazemi, H., Ramirez, B., Ozkan, E., Atan, S.: A critical review for proper use of water/oil/gas transfer functions in dual-porosity naturally fractured reservoirs: part II. SPE Reservoir Eva. Eng. 12(2), 211–217 (2009)

    Article  Google Scholar 

  51. March, R., Doster, F., Geiger, S.: Assessment of CO2 storage potential in naturally fractured reservoirs with dual-porosity models. Water Resour. Res. 54(3), 1650–1668 (2018)

    Article  Google Scholar 

  52. Brooks, R.H., Corey, A.T.: Hydraulic properties of porous media Hydrology paper, vol. 3. Colorado State University, Fort Collins (1964)

    Google Scholar 

  53. Court, B., Bandilla, K.W., Celia, M.A., Janzen, A., Dobossy, M., Nordbotten, J.M.: Applicability of vertical-equilibrium and sharp-interface assumptions in CO2 sequestration modeling. Int. J. Greenh. Gas Control 10, 134–147 (2012)

    Article  Google Scholar 

  54. Lang, P.S., Paluszny, A., Zimmerman, R.W.: Permeability tensor of three-dimensional fractured porous rock and a comparison to trace map predictions. J. Geophys. Res. Solid Earth 119(8), 6288–6307 (2014)

    Article  Google Scholar 

  55. Faybishenko, B., Benson, S. M., Gale, J. E.: Dynamics of Fluids and Transport in Complex Fractured-Porous Systems. AGU & Wiley, Hoboken (2015)

    Book  Google Scholar 

  56. March, R., Elder, H., Doster, F., Geiger, S.: Accurate dual-porosity modeling of CO2 storage in fractured reservoirs (SPE-182646-MS). SPE Reservoir Simulation Conference, Montgomery, Texas, USA (2017)

  57. Balogun, A., Kazemi, H., Ozkan, E., Al-Kobaisi, M., Ramirez, B.: Verification and proper use of water-oil transfer function for dual-porosity and dual-permeability reservoirs. SPE Reservoir Eva. Eng. 12(2), 189–199 (2009)

    Article  Google Scholar 

  58. Fung, L.S.: Simulation of block-to-block processes in naturally fractured reservoirs. SPE Reservoir Eng 6(4), 477–484 (1991)

    Article  Google Scholar 

  59. Becker, B., Guo, B., Bandilla, K.W., Celia, M.A., Flemisch, B., Helmig, R.: A pseudo-vertical equilibrium model for slow gravity drainage dynamics. Water. Resour. Res. 53(12), 10491–10507 (2017)

    Article  Google Scholar 

  60. Guo, B., Bandilla, K.W., Doster, F., Keilegavlen, E., Celia, M.A.: A vertically integrated model with vertical dynamics for CO2 storage. Water. Resour. Res. 50(8), 6269–6284 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Carbon Mitigation Initiative at Princeton University and by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant Number DE-FE0023323. This project is managed and administered by Princeton University and funded by DOE/NETL and cost-sharing partners. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiheng Tao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, Y., Guo, B., Bandilla, K.W. et al. Vertically integrated dual-continuum models for CO2 injection in fractured geological formations. Comput Geosci 23, 273–284 (2019). https://doi.org/10.1007/s10596-018-9805-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-018-9805-x

Keywords

Navigation