Skip to main content

Advertisement

Log in

Optimal design of hydraulic fracturing in porous media using the phase field fracture model coupled with genetic algorithm

  • Original paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

A Correction to this article was published on 10 September 2018

This article has been updated

Abstract

We present a framework for the coupling of fluid-filled fracture propagation and a genetic inverse algorithm for optimizing hydraulic fracturing scenarios in porous media. Fracture propagations are described by employing a phase field approach, which treats fracture surfaces as diffusive zones rather than of interfaces. Performance of the coupled approach is provided with applications to numerical experiments related to maximizing production or reservoir history matching for emphasizing the capability of the framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

  • 10 September 2018

    The original print publication of this article unfortunately contains mistakes introduced during the production process. There were serious flaws in expressing the variable vector “x” throughout the article.

References

  1. Abass, H.H., Soliman, M.Y., Al-Tahini, A.M., Surjaatmadja, J.B., Meadows, D.L., Sierra, L.: Oriented fracturing: a new technique to hydraulically fracture an openhole horizontal well. In: SPE Annual Technical Conference and Exhibition (2009)

  2. Almani, T., Kumar, K., Dogru, A., Singh, G., Wheeler, M.F.: Convergence analysis of multirate fixed-stress split iterative schemes for coupling flow with geomechanics. Comput. Methods Appl. Mech. Eng. 311, 180–207 (2016)

    Article  Google Scholar 

  3. Almani, T., Lee, S., Wheeler, M.F., Wick, T.: Multirate coupling for flow and geomechanics applied to hydraulic fracturing using an adaptive phase-field technique. volume SPE-182610-MS Society of Petroleum Engineers (2017)

  4. Ambrosio, L., Tortorelli, V.: Approximation of functionals depending on jumps by elliptic functionals via γ-convergence. Commun. Pure Appl. Math. 43, 999–1036 (1990)

    Article  Google Scholar 

  5. Ambrosio, L., Tortorelli, V.: On the approximation of free discontinuity problems. Unione Matematica Italiana. Bollettino. B. 6, 105–123 (1992)

    Google Scholar 

  6. Amor, H., Marigo, J.-J., Maurini, C.: Regularized formulation of the variational brittle fracture with unilateral contact numerical experiments. J. Mech. Phys. Solids 57, 1209–1229 (2009)

    Article  Google Scholar 

  7. Bangerth, W., Davydov, D., Heister, T., Heltai, L., Kanschat, G., Kronbichler, M., Maier, M., Turcksin, B., Wells, D.: The deal.II library, version 8.4. J. Numer. Math. 24(3), 135–141 (2016)

    Article  Google Scholar 

  8. Bangerth, W., Klie, H., Wheeler, M.F., Stoffa, P.L., Sen, M.K.: On optimization algorithms for the reservoir oil well placement problem. Comput. Geosci. 10(3), 303–319 (2006)

    Article  Google Scholar 

  9. Bourdin, B., Francfort, G., Marigo, J.-J.: Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48(4), 797–826 (2000)

    Article  Google Scholar 

  10. Britt, L.: Optimized oilwell fracturing of moderate-permeability reservoirs. In: SPE Annual Technical Conference and Exhibition (1985)

  11. Castonguay, S.T., Mear, M.E., Dean, R.H., Schmidt, J.H.: Predictions of the growth of multiple interacting hydraulic fractures in three dimensions. In: SPE Annual Technical Conference and Exhibition, vol. 3, pp 2206–2217 (2013)

  12. Cheng, C., Bunger, A.P., Peirce, A.P.: Optimal perforation location and limited entry design for promoting simultaneous growth of multiple hydraulic fractures. In: SPE Hydraulic Fracturing Technology Conference (2016)

  13. Dean, R., Gai, X., Stone, C., Minkoff, S.: A comparison of techniques for coupling porous flow and geomechanics. SPE-79709-MS, 132–140 (2006)

  14. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  15. Dohmen, T., Zhang, J.J., Blangy, J.-P.: Stress shadowing effect key to optimizing spacing of multistage fracture stages. American Oil & Gas Reporter (2015)

  16. Fisher, M., Warpinski, N.: Hydraulic-fracture-height growth: real data. SPE Prod. Oper. 27(1), 8–19 (2012)

    Google Scholar 

  17. Fisher, M.K., Wright, C.A., Davidson, B.M., Goodwin, A., Fielder, E., Buckler, W., Steinsberger, N.: Integrating fracture mapping technologies to optimize stimulations in the Barnett Shale. In: SPE Annual Technical Conference and Exhibition (2002)

  18. Francfort, G., Marigo, J.-J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46(8), 1319–1342 (1998)

    Article  Google Scholar 

  19. Girault, V., Kumar, K., Wheeler, M.F.: Convergence of iterative coupling of geomechanics with flow in a fractured poroelastic medium. Comput. Geosci. 20(5), 997–1011 (2016). https://doi.org/10.1007/s10596-016-9573-4

    Article  Google Scholar 

  20. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Professional, Reading (1989)

    Google Scholar 

  21. Heider, Y., Markert, B.: A phase-field modeling approach of hydraulic fracture in saturated porous media. Mechanics Research Communications (2016)

  22. Heister, T., Wheeler, M.F., Wick, T.: A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach. Comput. Methods Appl. Mech. Eng. 290, 466–495 (2015)

    Article  Google Scholar 

  23. Holditch, S.A., Jennings, J.W., Neuse, S.H., Wyman, R.E.: The optimization of well spacing and fracture length in low permeability gas reservoirs. In: SPE Annual Fall Technical Conference and Exhibition (1978)

  24. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. U Michigan Press, Ann Arbor (1975)

    Google Scholar 

  25. Karma, A., Kessler, D.A., Levine, H.: Phase-field model of mode iii dynamic fracture. Phys. Rev. Lett. 87, 045501 (2001)

    Article  Google Scholar 

  26. Kim, J., Tchelepi, H., Juanes, R.: Stability, accuracy, and efficiency of sequentiel methods for flow and geomechanics. SPE J. 16(2), 249–262 (2011)

    Article  Google Scholar 

  27. Kim, J., Tchelepi, H., Juanes, R.: Stability and convergence of sequentiel methods for coupled flow and geomechanics: fixed-stress and fixed-strain splits. Comput. Methods Appl. Mech. Eng. 200(13-16), 1591–1606 (2011)

    Article  Google Scholar 

  28. Lee, S., Lee, Y.-J., Wheeler, M.F.: A locally conservative enriched galerkin approximation and efficient solver for elliptic and parabolic problems. SIAM J. Sci. Comput. 38(3), A1404–A1429 (2016)

    Article  Google Scholar 

  29. Lee, S., Mikelić, A., Wheeler, M., Wick, T.: Phase-field modeling of two-phase fluid-filled fractures in a poroelastic medium. submitted (2017)

  30. Lee, S., Mikelić, A., Wheeler, M.F., Wick, T.: Phase-field modeling of proppant-filled fractures in a poroelastic medium. Comput. Method Appl. Mech. Eng. 312, 509–541 (2016). Phase Field Approaches to Fracture

    Article  Google Scholar 

  31. Lee, S., Reber, J.E., Hayman, N.W., Wheeler, M.F.: Investigation of wing crack formation with a combined phase-field and experimental approach. Geophys. Res. Lett. 43(15), 7946–7952 (2016)

    Article  Google Scholar 

  32. Lee, S., Wheeler, M.F., Wick, T.: Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model. Comput. Methods Appl. Mech. Eng. 305, 111–132 (2016)

    Article  Google Scholar 

  33. Lee, S., Wheeler, M.F., Wick, T.: Iterative coupling of flow, geomechanics and adaptive phase-field fracture including level-set crack width approaches. J. Comput. Appl. Math. 314, 40–60 (2017)

    Article  Google Scholar 

  34. Lee, S., Wheeler, M.F., Wick, T., Srinivasan, S.: Initialization of phase-field fracture propagation in porous media using probability maps of fracture networks. Mech. Res. Commun. 80, 16–23 (2017). Multi-Physics of Solids at Fracture

    Article  Google Scholar 

  35. Liu, C.H.: Optimizing Hydraulic Fracture Spacing and Lateral Well Spacing in Tight/Unconventional Resource Development through Fully Coupling Stress Shadowing Effects and Fluid Flow – an Integrated Approach. PhD thesis, Colorado School of Mines (2016)

  36. Ma, X., Gildin, E., Plaksina, T.: Efficient optimization framework for integrated placement of horizontal wells and hydraulic fracture stages in unconventional gas reservoirs. J Unconventional Oil Gas Res. 9, 1–17 (2015)

    Article  Google Scholar 

  37. Mauthe, S., Miehe, C.: Hydraulic fracture in poro-hydro-elastic media. Mechanics Research Communications (2016)

  38. Meyer, B.R., Bazan, L.W.: A discrete fracture network model for hydraulically induced fractures-theory, parametric and case studies. In: SPE Hydraulic Fracturing Technology Conference (2011)

  39. Miehe, C., Hofacker, M., Welschinger, F.: A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng. 199, 2765–2778 (2010)

    Article  Google Scholar 

  40. Miehe, C., Kienle, D., Aldakheel, F., Teichtmeister, S.: Phase field modeling of fracture in porous plasticity: a variational gradient-extended eulerian framework for the macroscopic analysis of ductile failure. Computer Methods in Applied Mechanics and Engineering (2016)

  41. Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field fe implementations. Int. J. Numer. Methods Eng. 83, 1273–1311 (2010)

    Article  Google Scholar 

  42. Mikelić, A., Wang, B., Wheeler, M.F.: Numerical convergence study of iterative coupling for coupled flow and geomechanics. Comput. Geosci. 18(3-4), 325–341 (2014)

    Article  Google Scholar 

  43. Mikelić, A., Wheeler, M., Wick, T.: A phase-field approach to the fluid filled fracture surrounded by a poroelastic medium. ICES Report, 13–15 (2013)

  44. Mikelić, A., Wheeler, M., Wick, T.: Phase-field modeling of a fluid-driven fracture in a poroelastic medium. In: Press in Computational Geosciences. https://doi.org/10.1007/s10596-015-9532-5 (2013)

  45. Mikelić, A., Wheeler, M.F.: Convergence of iterative coupling for coupled flow and geomechanics. Comput. Geosci. 17(3), 455–462 (2012)

    Article  Google Scholar 

  46. Mikelić, A., Wheeler, M.F., Wick, T.: A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium. SIAM Multiscale Model Simul. 13(1), 367–398 (2015)

    Article  Google Scholar 

  47. Mikelić, A., Wheeler, M.F., Wick, T.: A quasi-static phase-field approach to pressurized fractures. Nonlinearity 28(5), 1371–1399 (2015)

    Article  Google Scholar 

  48. Min, B., Kang, J.M., Chung, S., Park, C., Jang, I.: Pareto-based multi-objective history matching with respect to individual production performance in a heterogeneous reservoir. J. Pet. Sci. Eng. 122, 551–566 (2014)

    Article  Google Scholar 

  49. Min, B., Kang, J.M., Lee, H., Jo, S., Park, C., Jang, I.: Development of a robust multi-objective history matching for reliable well-based production forecasts. Energy Explor. Exploit. 34(6), 795–809 (2016)

    Article  Google Scholar 

  50. Min, B., Park, C., Jang, I., Kang, J.M., Chung, S.: Development of pareto-based evolutionary model integrated with dynamic goal programming and successive linear objective reduction. Appl. Soft Comput. 35, 75–112 (2015)

    Article  Google Scholar 

  51. Min, B., Park, C., Kang, J., Park, H., Jang, I.: Optimal well placement based on artificial neural network incorporating the productivity potential. Energy Sources, Part A 33(18), 1726–1738 (2011)

    Article  Google Scholar 

  52. Min, B., Wheeler, M.F., Sun, A.Y.: Parallel multiobjective optimization for the coupled compositional/geomechanical modeling of pulse testing. In: SPE Reservoir Simulation Conference. Society of Petroleum Engineers (2017)

  53. Nagel, N., Zhang, F., Sanchez-Nagel, M., Lee, B., Agharazi, A., et al: Stress shadow evaluations for completion design in unconventional plays. In: SPE Unconventional Resources Conference Canada. Society of Petroleum Engineers (2013)

  54. Peirce, A., Bunger, A.: Interference fracturing: non-uniform distributions of perforation clusters that promote simultaneous growth of multiple hydraulic fractures. SPE J. 20(2), 384–395 (2015)

    Article  Google Scholar 

  55. Peirce, A., Detournay, E.: An implicit level set method for modeling hydraulically driven fractures. Comput. Methods Appl. Mech. Eng. 197(33), 2858–2885 (2008)

    Article  Google Scholar 

  56. Rice, J.R.: Mathematical analysis in the mechanics of fracture. Fracture: An Advan. Treatise 2, 191–311 (1968)

    Google Scholar 

  57. Saputelli, L., Lopez, C., Chacon, A., Soliman, M.: Design optimization of horizontal wells with multiple hydraulic fractures in the bakken shale. In: SPE/EAGE European Unconventional Resources Conference and Exhibition (2014)

  58. Settari, A., Mourits, F.: A coupled reservoir and geomechanical simulation system. SPE J. 3(3), 219–226 (1998)

    Article  Google Scholar 

  59. Singh, G., Pencheva, G., Kumar, K., Wick, T., Ganis, B., Wheeler, M.: Impact of Accurate Fractured Reservoir Flow Modeling on Recovery Predictions. SPE 188630-MS, SPE Hydraulic Fracturing Technology Conference, Woodlands, TX (2014)

  60. Veatch, R.: Overview of current hydraulic fracturing design and treatment technology-part 1. J. Petrol. Tech. 35(4), 677–687 (1983)

    Article  Google Scholar 

  61. Vincent, M.: The next opportunity to improve hydraulic-fracture stimulation. J. Petrol. Tech. 64(3), 118–127 (2012)

    Article  Google Scholar 

  62. Wheeler, J., Wheeler, M.: Ipars technical manual. Center for Subsurface Modeling, The University of Texas at Austin (1990)

  63. Wick, T., Lee, S., Wheeler, M.F.: 3D phase-field for pressurized fracture propagation in heterogeneous media. VI International Conference on Computational Methods for Coupled Problems in Science and Engineering 2015 Proceedings (2015)

  64. Wick, T., Singh, G., Wheeler, M.: Fluid-filled fracture propagation using a phase-field approach and coupling to a reservoir simulator. SPE J. 21, 981–999 (2015)

    Article  Google Scholar 

  65. Wu, K., Olson, J., Balhoff, M.T., Yu, W., et al.: Numerical analysis for promoting uniform development of simultaneous multiple-fracture propagation in horizontal wells. SPE Production & Operations (2016)

  66. Wu, K., Olson, J.E., et al.: Investigation of the impact of fracture spacing and fluid properties for interfering simultaneously or sequentially generated hydraulic fractures. SPE Prod. Oper. 28(04), 427–436 (2013)

    Google Scholar 

  67. Wu, K., Olson, J.E., et al.: Mechanisms of simultaneous hydraulic-fracture propagation from multiple perforation clusters in horizontal wells. SPE Journal (2016)

  68. Xiong, H.: Optimizing cluster or fracture spacing: an overview (2017)

  69. Zangeneh, N., Eberhardt, E., Bustin, R.: Investigation of the influence of stress shadows on horizontal hydraulic fractures from adjacent lateral wells. J Unconventional Oil Gas Res. 9, 54–64 (2015)

    Article  Google Scholar 

Download references

Funding

The research by S. Lee, B. Min, and M. F. Wheeler were funded by the U.S. Department of Energy, National Energy Technology Laboratory grant DOE FG02-04ER25617. S. Lee and M. F. Wheeler were partially supported by NSF grant NSF 1546553. B. Min was funded by the National Research Foundation of Korea (NRF) grants (No. NRF-2017R1C1B5017767, No. NRF-2017K2A9A1A01092734).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baehyun Min.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Min, B. & Wheeler, M.F. Optimal design of hydraulic fracturing in porous media using the phase field fracture model coupled with genetic algorithm. Comput Geosci 22, 833–849 (2018). https://doi.org/10.1007/s10596-018-9728-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-018-9728-6

Keywords

Navigation