Skip to main content
Log in

Constraint energy minimizing generalized multiscale finite element method in the mixed formulation

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

A Correction to this article was published on 09 March 2019

This article has been updated

Abstract

This paper presents a novel mass-conservative mixed multiscale method for solving flow equations in heterogeneous porous media. The media properties (the permeability) contain multiple scales and high contrast. The proposed method solves the flow equation in a mixed formulation on a coarse grid by constructing multiscale basis functions. The resulting velocity field is mass-conservative on the fine grid. Our main goal is to obtain first-order convergence in terms of the mesh size which is independent of local contrast. This is achieved, first, by constructing some auxiliary spaces, which contain global information that cannot be localized, in general. This is built on our previous work on the generalized multiscale finite element method (GMsFEM). In the auxiliary space, multiscale basis functions corresponding to small (contrast-dependent) eigenvalues are selected. These basis functions represent the high-conductivity channels (which connect the boundaries of a coarse block). Next, we solve local problems to construct multiscale basis functions for the velocity field. These local problems are formulated in the oversampled domain, taking into account some constraints with respect to auxiliary spaces. The latter allows fast spatial decay of local solutions and, thus, allows taking smaller oversampled regions. The number of basis functions depends on small eigenvalues of the local spectral problems. Moreover, multiscale pressure basis functions are needed in constructing the velocity space. Our multiscale spaces have a minimal dimension, which is needed to avoid contrast dependence in the convergence. The method’s convergence requires an oversampling of several layers. We present an analysis of our approach. Our numerical results confirm that the convergence rate is first order with respect to the mesh size and independent of the contrast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

  • 09 March 2019

    This paper presents a novel mass-conservative mixed multiscale method for solving flow equations in heterogeneous porous media. The media properties (the permeability) contain multiple scales and high contrast.

  • 09 March 2019

    This paper presents a novel mass-conservative mixed multiscale method for solving flow equations in heterogeneous porous media. The media properties (the permeability) contain multiple scales and high contrast.

References

  1. Aarnes, J.E.: On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation. SIAM J. Multiscale Model. Simul. 2, 421–439 (2004)

    Article  Google Scholar 

  2. Aarnes, J.E., Efendiev, Y., Jiang, L.: Analysis of multiscale finite element methods using global information for two-phase flow simulations. SIAM J. Multiscale Model. Simul. 7, 2177–2193 (2008)

    Article  Google Scholar 

  3. Aarnes, J.E., Krogstad, S., Lie, K.-A.: A hierarchical multiscale method for two-phase flow based upon mixed finite elements and nonuniform grids. SIAM J. Multiscale Model. Simul. 5(2), 337–363 (2006)

    Article  Google Scholar 

  4. Arbogast, T., Pencheva, G., Wheeler, M.F., Yotov, I.: A multiscale mortar mixed finite element method. SIAM J. Multiscale Model. Simul. 6(1), 319–346 (2007)

    Article  Google Scholar 

  5. Barker, J.W., Thibeau, S.: A critical review of the use of pseudorelative permeabilities for upscaling. SPE Reservoir Eng. 12, 138–143 (1997)

    Article  Google Scholar 

  6. Bush, L., Ginting, V.: On the application of the continuous Galerkin finite element method for conservation problems. SIAM J. Sci. Comput. 35(6), A2953—A2975 (2013)

    Article  Google Scholar 

  7. Chan, H. Y., Chung, E. T., Efendiev, Y.: Adaptive mixed GMsFEM for flows in heterogeneous media. Numer. Math. Theory, Methods and Appl. 9(4), 497–527 (2016)

    Article  Google Scholar 

  8. Chen, F., Chung, E., Jiang, L.: Least-squares mixed generalized multiscale finite element method. Comput. Methods Appl. Mech. Eng. 311, 764–787 (2016)

    Article  Google Scholar 

  9. Chen, Y., Durlofsky, L., Gerritsen, M., Wen, X.: A coupled local-global upscaling approach for simulating flow in highly heterogeneous formations. Adv. Water Resour. 26, 1041–1060 (2003)

    Article  Google Scholar 

  10. Chen, Z., Hou, T. Y.: A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comput. 72(242), 541–576 (2003)

    Article  Google Scholar 

  11. Christie, M., Blunt, M.: Tenth SPE comparative solution project: A comparison of upscaling techniques. SPE Reser. Eval. Eng. 4, 308–317 (2001)

    Article  Google Scholar 

  12. Chung, E., Efendiev, Y., Hou, T. Y.: Adaptive multiscale model reduction with generalized multiscale finite element methods. J. Comput. Phys. 320, 69–95 (2016)

    Article  Google Scholar 

  13. Chung, E. T., Efendiev, Y., Lee, C. S.: Mixed generalized multiscale finite element methods and applications. Multiscale Model. Simul. 13(1), 338–366 (2015)

    Article  Google Scholar 

  14. Chung, E. T., Efendiev, Y., Leung, W. T.: Constraint energy minimizing generalized multiscale finite element method. arXiv preprint. arXiv:1704.03193 (2017)

  15. Chung, E. T., Fu, S., Yang, Y.: An enriched multiscale mortar space for high contrast flow problems. arXiv preprint. arXiv:1609.02610 (2016)

  16. Chung, E. T., Leung, W. T., Vasilyeva, M.: Mixed GMsFEM for second order elliptic problem in perforated domains. J. Comput. Appl. Math. 304, 84–99 (2016)

    Article  Google Scholar 

  17. Cortinovis, D., Jenny, P.: Iterative Galerkin-enriched multiscale finite-volume method. J. Comput. Phys. 277, 248–267 (2014)

    Article  Google Scholar 

  18. Durlofsky, L.J.: Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media. Water Resour. Res. 27, 699–708 (1991)

    Article  Google Scholar 

  19. Durlofsky, L.J.: Coarse scale models of two-phase flow in heterogeneous reservoirs: Volume averaged equations and their relation to existing upscaling techniques. Comput. Geosci. 2, 73–92 (1998)

    Article  Google Scholar 

  20. Efendiev, Y., Galvis, J.: A domain decomposition preconditioner for multiscale high-contrast problems. In: Huang, Y., Kornhuber, R., Widlund, O., Xu, J. (eds.) Domain Decomposition Methods in Science and Engineering XIX, volume 78 of Lect. Notes in Comput. Science and Eng., pages 189–196. Springer-Verlag (2011)

  21. Efendiev, Y., Galvis, J., Hou, T.: Generalized multiscale finite element methods. J. Comput. Phys. 251, 116–135 (2013)

    Article  Google Scholar 

  22. Efendiev, Y., Galvis, J., Lazarov, R., Willems, J.: Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms. ESIAM : M2AN 46, 1175–1199 (2012)

    Article  Google Scholar 

  23. Efendiev, Y., Hou, T.: Multiscale finite element methods: Theory and applications. Springer, Berlin (2009)

    Google Scholar 

  24. Efendiev, Y., Hou, T., Wu, X.H.: Convergence of a nonconforming multiscale finite element method. SIAM J. Numer. Anal. 37, 888–910 (2000)

    Article  Google Scholar 

  25. Efendiev, Y., Iliev, O., Vassilevski, P.S.: Mini-workshop: Numerical upscaling for media with deterministic and stochastic heterogeneity. Oberwolfach Reports 10(1), 393–431 (2013)

    Article  Google Scholar 

  26. Hajibeygi, H., Kavounis, D., Jenny, P.: A hierarchical fracture model for the iterative multiscale finite volume method. J. Comput. Phys. 230(4), 8729–8743 (2011)

    Article  Google Scholar 

  27. Hou, T., Wu, X.H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134, 169–189 (1997)

    Article  Google Scholar 

  28. Hou, T., Zhang, P.: private communications

  29. Hughes, T.J.R.: Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Engrg. 127, 387–401 (1995)

    Article  Google Scholar 

  30. Jenny, P., Lee, S.H., Tchelepi, H.: Multi-scale finite volume method for elliptic problems in subsurface flow simulation. J. Comput. Phys. 187, 47–67 (2003)

    Article  Google Scholar 

  31. Lie, K.-A., Møyner, O., Natvig, J.R., et al.: A feature-enriched multiscale method for simulating complex geomodels. In: SPE Reservoir Simulation Conference. Society of Petroleum Engineers (2017)

  32. Lunati, I., Jenny, P.: Multi-scale finite-volume method for highly heterogeneous porous media with shale layers. In: Proceedings of the 9th European Conference on the Mathematics of Oil Recovery (ECMOR), Cannes, France (2004)

  33. Målqvist, A., Peterseim, D.: Localization of elliptic multiscale problems. Math. Comput. 83(290), 2583–2603 (2014)

    Article  Google Scholar 

  34. Odsæter, L.H., Wheeler, M.F., Kvamsdal, T., Larson, M.G.: Postprocessing of non-conservative flux for compatibility with transport in heterogeneous media. Comput. Methods Appl. Mech. Eng. 315, 799–830 (2017)

    Article  Google Scholar 

  35. Owhadi, H.: Multigrid with rough coefficients and multiresolution operator decomposition from hierarchical information games. SIAM Rev. 59(1), 99–149 (2017)

    Article  Google Scholar 

  36. Owhadi, H., Zhang, L., Berlyand, L.: Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization. ESAIM: Math. Model. Numer. Anal. 48(2), 517–552 (2014)

    Article  Google Scholar 

  37. Peszyńska, M.: Mortar adaptivity in mixed methods for flow in porous media. Int. J. Numer. Anal. Model. 2(3), 241–282 (2005)

    Google Scholar 

  38. Peszyńska, M., Wheeler, M., Yotov, I.: Mortar upscaling for multiphase flow in porous media. Comput. Geosci. 6(1), 73–100 (2002)

    Article  Google Scholar 

  39. Wu, X.H., Efendiev, Y., Hou, T.Y.: Analysis of upscaling absolute permeability. Discrete and Continuous Dynamical Systems, Series B. 2, 158–204 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Chung.

Additional information

The research of Eric Chung is supported by Hong Kong RGC General Research Fund (Project 14317516). YE would like to thank the partial support from NSF 1620318, the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program under Award Number DEFG02-13ER26165 and National Priorities Research Program grant NPRP grant 7-1482-1278 from the Qatar National Research Fund. YE would also like to acknowledge the support of Mega-grant of the Russian Federation Government (N 14.Y26.31.0013).

Appendices

Appendix

An existence of global and multiscale basis functions

In this appendix, we prove the existence of the problem (??)–(??). It suffices to prove the following. There exists a constant \(\widetilde {C}\) such that for all \((u,p)\in V_{0}(K^{+}_{i})\times Q(K^{+}_{i})\), there exist a pair \((v,q)\in V_{0}(K^{+}_{i})\times Q(K^{+}_{i})\) such that

$$\|(u,p)\| \leq \widetilde{C} \, \frac{A((u,p),(v,q))}{\|(v,q)\|} $$

where

$$A((u,p),(v,q)) = a(u,v)-b(v,p)+b(u,q)+s(\pi p,\pi q) $$

and

$$\|(u,p)\|^{2} = \|u\|_{a}^{2} + \|p\|_{s}^{2}. $$

First, it is clear that

$$\|u\|_{a}^{2}+\|\pi p\|_{s}^{2}\leq A((u,p),(u,p)). $$

By the inf-sup condition (??), there exist a w such that ∥wV = ∥(Iπ)ps and

$$\|p\|_{s}^{2}\leq C^{-1} \, (\cfrac{b(w,p)}{\|w\|_{V}})^{2}+\|\pi p\|_{s}^{2}. $$

Therefore,

$$\begin{array}{@{}rcl@{}} A((u,p),(w,0)) &\,=\,& a(u,w)\,-\,b(w,p)\!\geq\! a(u,w)\,+\,C \|(I\,-\,\pi)p\|_{s}\|w\|_{V} \\ & \!\geq\!& (C \|(I\,-\,\pi)p\|_{s}\,-\,\|u\|_{a})\|(I\,-\,\pi)p\|_{s} \end{array} $$

and

$$\begin{array}{@{}rcl@{}} A((u,p),\!(0,\tilde{\kappa}^{-1}\nabla\!\cdot\! u)) & \,=\,&s(\pi p,\tilde{\kappa}^{-1}\nabla\cdot u)+\|\tilde{\kappa}^{-\frac{1}{2}}\nabla\cdot u\|_{L^{2}({\Omega})}^{2}\\ & \!\!\geq\!&\! \|\tilde{\kappa}^{-\frac{1}{2}}\nabla\cdot \!u\|_{L^{2}({\Omega})}(\|\tilde{\kappa}^{-\frac{1}{2}}\nabla\!\cdot u\|_{L^{2}({\Omega})}\!\,-\,\!\|\pi p\|_{s}). \end{array} $$

Next, we take \((v,q)=(u+\beta w,p+\tilde {\kappa }^{-1}\nabla \cdot u)\), so

$$\begin{array}{@{}rcl@{}} &&\, \!A((u,p),(v,q)) \\ &&\,=\,\,\|u\|_{a}^{2}+\|\pi p\|_{s}^{2}+\beta(C\|(I-\pi)p\|_{s}-\|u\|_{a})\\&&\!\|(I\!\,-\,\pi)p\|_{s} \,+\,(\|\tilde{\kappa}^{-\frac{1}{2}}\nabla\!\cdot\! u\|_{L^{2}({\Omega})}\!\,-\,\|\pi p\|_{s})\|\tilde{\kappa}^{-\frac{1}{2}}\nabla\!\cdot\! u\|_{L^{2}({\Omega})}\\ &\ &geq\, \|u\|_{a}^{2}+\|\pi p\|_{s}^{2} +\frac{\beta C}{2} \|(I-\pi)p\|_{s}^{2}-\cfrac{\beta}{2C}\|u\|_{a}^{2}\\&&+\frac{1}{2}\|\tilde{\kappa}^{-\frac{1}{2}}\nabla\cdot u\|_{L^{2}({\Omega})}^{2}-\cfrac{1}{2}\|\pi p\|_{s}^{2} \end{array} $$

Finally, we choose β = C, we have

$$\begin{array}{@{}rcl@{}} A((u,p),(v,q))&\!\geq\!&\cfrac{1}{2}\|u\|_{a}^{2}+\cfrac{1}{2}\|\pi p\|_{s}^{2}\\&&\!+\cfrac{1}{2}\|\tilde{\kappa}^{-\frac{1}{2}}\nabla\cdot u\|_{L^{2}({\Omega})}^{2} \!+\cfrac{C^{2}}{2}\|(I-\pi)p\|_{s}^{2} \end{array} $$

and

$$\|(v,q)\|\leq\|(u,p)\|+C\|(I-\pi)p\|_{s}+\|\tilde{\kappa}^{-\frac{1}{2}}\nabla\cdot u\|_{L^{2}({\Omega})}. $$

This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, E., Efendiev, Y. & Leung, W.T. Constraint energy minimizing generalized multiscale finite element method in the mixed formulation. Comput Geosci 22, 677–693 (2018). https://doi.org/10.1007/s10596-018-9719-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-018-9719-7

Keywords

Navigation