Skip to main content
Log in

Restoration of grasslands using commercially produced seed mixtures: genetic variation within and among natural and restored populations of three common grassland species

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The use of commercially produced seed material is a common practice in restoration. However, the impact of sowing on genetic variation of natural populations is still unclear. Aim of this study was, therefore, to test if genetic variation within and among populations restored with local seed material corresponds to the genetic variation of neighboring natural populations. We investigated each ten natural and restored populations of three common grassland species (Knautia arvensis, Silene vulgaris and Plantago lanceolata), situated in five study regions in southeastern Germany. Our study revealed significant genetic differentiation between natural and restored populations of the insect-pollinated K. arvensis and S. vulgaris although differentiation was much stronger for K. arvensis since most restored populations contained another ploidy level than natural populations. For the wind-pollinated P. lanceolata, genetic differentiation between natural and restored populations was comparable to the genetic differentiation between its natural populations. Genetic diversity within restored populations of each species was equivalent or even higher than within natural populations. Our study provides evidence that the local genetic structure especially of common insect-pollinated grassland species may be affected by the application of regional seed mixtures in restoration. Regional admixed provenancing in seed production is an important approach to preserve regional patterns and to provide seeds for the reestablishment of genetically variable populations. The method would however be an even more powerful tool in restoration when ploidy levels would be checked before seed production and seed transfer zones would be smaller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aavik T, Edwards PJ, Holderegger R, Graf R, Billeter R (2012) Genetic consequences of using seed mixtures in restoration: a case study of a wetland plant Lychnis flos-cuculi. Biol Conserv 145:195–204

    Article  Google Scholar 

  • Agren J (1996) Population size, pollinator limitation, and seed set in the self-incompatible herb Lythrum salicaria. Ecology 77:1779–1790

    Article  Google Scholar 

  • Bakker JP, Poschlod P, Strykstra RJ, Bekker RM, Thompson K (1996) Seed banks and seed dispersal: important topics in restoration ecology. Acta Bot Neerl 45:461–490

    Article  Google Scholar 

  • Bischoff A, Cremieux L, Smilauerova M, Lawson CS, Mortimer SR, Dolezal J, Lanta V, Edwards AR, Brook AJ, Macel M, Leps J, Steinger T, Muller-Scharer H (2006) Detecting local adaptation in widespread grassland species—the importance of scale and local plant community. J Ecol 94:1130–1142

    Article  Google Scholar 

  • Bonin A, Bellemain E, Eidesen PB, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273

    Article  CAS  PubMed  Google Scholar 

  • Bucharova A, Michalski S, Hermann JM, Heveling K, Durka W, Holzel N, Kollmann J, Bossdorf O (2017) Genetic differentiation and regional adaptation among seed origins used for grassland restoration: lessons from a multispecies transplant experiment. J Appl Ecol 54:127–136

    Article  Google Scholar 

  • Bucharova A, Bossdorf O, Hölzel N, Kollmann J, Prasse R, Durka W (2018) Mix and match: regional admixture provenancing strikes a balance among different seed-sourcing strategies for ecological restoration. Conserv Genet 1–11

  • Bylebyl K, Poschlod P, Reisch C (2008) Genetic variation of Eryngium campestre L. (Apiaceae) in Central Europe. Mol Ecol 17:3379–3388

    Article  PubMed  Google Scholar 

  • Crémieux L, Bischoff A, Müller-Schärer H, Steinger T (2010) Gene flow from foreign provenances into local plant populations: fitness consequences and implications for biodiversity restoration. Am J Bot 97:94–100

    Article  PubMed  Google Scholar 

  • Durka W, Michalski SG, Berendzen KW, Bossdorf O, Bucharova A, Hermann JM, Holzel N, Kollmann J (2017) Genetic differentiation within multiple common grassland plants supports seed transfer zones for ecological restoration. J Appl Ecol 54:116–126

    Article  Google Scholar 

  • Earl DA, Vonholdt BM (2012) Structure harvester: a website and program for visualizing structure output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population-size—implications for plant conservation. Annu Rev Ecol Syst 24:217–242

    Article  Google Scholar 

  • ErMiV (2011) Verordung über das Inverkehrbringen von Saatgut von Erhaltungsmischungen (Erhaltungsmischungsverordnung). (ed. Bundesgesetzblatt), pp. 2641–2646

  • Espeland EK, Emery NC, Mercer KL, Woolbright SA, Kettenring KM, Gepts P, Etterson JR (2017) Evolution of plant materials for ecological restoration: insights from the applied and basic literature. J Appl Ecol 54:102–115

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation studie. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes—application to human mitochondrial-DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  • FoVHgV (2003) Verordnung über Herkunftsgebiete für forstliches Vermehrungsgut (Forstvermehrungsgut-Herkunftsgebietsverordung - FoVHgV). (ed. Bundesgesetzblatt), p. 238

  • Frankham R, Ballou JD, Biscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Friar EA, Ladoux T, Roaldson EH, Robichaux RH (2000) Microsatellite analysis of a population crash and bottleneck in the Maune Kea silversword, Argyroxiphium sandwicense ssp. sandwicense (Asteraceae), and its implications for reintroduction. Mol Ecol 9:2027–2034

    Article  CAS  PubMed  Google Scholar 

  • Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Philos Trans Roy Soc B 351:1291–1298

    Article  Google Scholar 

  • Hölzel N, Buisson E, Dutoit T (2012) Species introduction—a major topic in vegetation restoration. Appl Veg Sci 15:161–165

    Article  Google Scholar 

  • Honnay O, Jacquemyn H (2007) Susceptibility of common and rare plant species to the genetic consequences of habitat fragmentation. Conserv Biol 21:823–831

    Article  PubMed  Google Scholar 

  • Hufford KM, Mazer SJ (2003) Plant ecotypes: genetic differentiation in the age of ecological restoration. Trends Ecol Evol 18:147–155

    Article  Google Scholar 

  • Jongepierova I, Mitchley J, Tzanopoulos J (2007) A field experiment to recreate species rich hay meadows using regional seed mixtures. Biol Conserv 139:297–305

    Article  Google Scholar 

  • Jørgensen M, Elameen A, Hofman N, Klemsdal S, Malaval S, Fjellheim S (2016) What’s the meaning of local? Using molecular markers to define seed transfer zones for ecological restoration in Norway. Evol Appl 9:673–684

    Article  PubMed  PubMed Central  Google Scholar 

  • Joshi J, Schmid B, Caldeira MC, Dimitrakopoulos PG, Good J, Harris R, Hector A, Huss-Danell K, Jumpponen A, Minns A, Mulder CPH, Pereira JS, Prinz A, Scherer-Lorenzen M, Siamantziouras ASD, Terry AC, Troumbis AY, Lawton JH (2001) Local adaptation enhances performance of common plant species. Ecol Lett 4:536–544

    Article  Google Scholar 

  • Keller M, Kollmann J, Edwards PJ (2000) Genetic introgression from distant provenances reduces fitness in local weed populations. J Appl Ecol 37:647–659

    Article  Google Scholar 

  • Kiehl K, Kirmer A, Shaw N, Tischew S (2014) Guidelines for native seed production and grassland restoration. Cambridge Scholars Publishing, Cambridge

    Google Scholar 

  • Kohler C, Mittelsten Scheid O, Erilova A (2010) The impact of the triploid block on the origin and evolution of polyploid plants. Trends Genet 26:142–148

    Article  CAS  PubMed  Google Scholar 

  • Kolar F, Stech M, Travnicek P, Rauchova J, Urfus T, Vit P, Kubesova M, Suda J (2009) Towards resolving the Knautia arvensis agg. (Dipsacaceae) puzzle: primary and secondary contact zones and ploidy segregation at landscape and microgeographic scales. Ann Bot 103:963–974

    Article  PubMed  PubMed Central  Google Scholar 

  • Krauss SL, Sinclair EA, Bussell JD, Hobbs RJ (2013) An ecological genetic delineation of local seed-source provenance for ecological restoration. Ecol Evol 3:2138–2149

    Article  PubMed  PubMed Central  Google Scholar 

  • Kunin WE (1997) Population size and density effects in pollination: pollinator foraging and plant reproductive success in experimental arrays of Brassica kaber. J Ecol 85:225–234

    Article  Google Scholar 

  • Leimu R, Fischer M (2008) A meta-analysis of local adaptation in plants. PLoS ONE 3:e4010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Listl D, Poschlod P, Reisch C (2017a) Do seed transfer zones for ecological restoration reflect the spatial genetic variation of the common grassland species Lathyrus pratensis?. Restoration Ecology 26:667–676

    Google Scholar 

  • Listl D, Poschlod P, Reisch C (2017b) Genetic variation of liverleaf (Hepatica nobilis Schreb.) in Bavaria against the background of seed transfer guidelines in forestry and restoration. Biochem Syst Ecol 71:32–41

    Article  CAS  Google Scholar 

  • Malaval S, Lauga B, Regnault-Roger C, Largier G (2010) Combined definition of seed transfer guidelines for ecological restoration in the French Pyrenees. Appl Veg Sci 13:113–124

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • McKay JK, Christian CE, Harrison S, J. RK (2005) How local is local?a review of practical and conceptual issues in the genetics of restoration. Restor Ecol 13:432–440

    Article  Google Scholar 

  • Meynen E, Schmithüsen J, Gellert J, Neef E, Müller-Miny H, Schulze JH (1953) Handbuch der naturräumlichen Gliederung Deutschlands. Bundesanstalt fur Landeskunde, Remagen

    Google Scholar 

  • Michalski SG, Durka W (2012) Assessment of provenance delineation by genetic differentiation patterns and estimates of gene flow in the common grassland plant Geranium pratense. Conserv Genet 13:581–592

    Article  Google Scholar 

  • Mijnsbrugge KV, Bischoff A, Smith B (2010) A question of origin: where and how to collect seed for ecological restoration. Basic Appl Ecol 11:300–311

    Article  Google Scholar 

  • Miller S, Bartow A, Gisler M, Ward K, Young A, Kaye TN (2011) Can an ecoregion serve as a seed transfer zone? evidence from a common garden study with five native species. Restor Ecol 19:268–276

    Article  Google Scholar 

  • Montalvo AM, Ellstrand NC (2001) Nonlocal transplantation and outbreeding depression in the subshrub Lotus scoparius (Fabaceae). Am J Bot 88:258–269

    Article  CAS  PubMed  Google Scholar 

  • Münzbergova Z, Herben T (2005) Seed, dispersal, microsite, habitat and recruitment limitation: identification of terms and concepts in studies of limitations. Oecologia 145:1–8

    Article  PubMed  Google Scholar 

  • Nagel R, Durka W, Bossdorf O, Bucharova A (2018) Rapid evolution in native plants cultivated for ecological restoration: not a general pattern. Plant Biol

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Prasse R, Kunzmann D, Schröder R (2010) Entwicklung und praktische Umsetzung naturschutzfachlicher Mindestanforderungen an einen Herkunftsnachweis für gebietseigenes Wildpflanzensaatgut krautiger Pflanzen. In: Abschlussbericht DBU-Projekt: AZ 23931 (ed. Umweltplanung If). Universität Hannover

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reiker J, Schulz B, Wissemann V, Gemeinholzer B (2015) Does origin always matter? evaluating the influence of nonlocal seed provenances for ecological restoration purposes in a widespread and outcrossing plant species. Ecol Evol 5:5642–5651

    Article  PubMed  PubMed Central  Google Scholar 

  • Reisch C (2007) Genetic structure of Saxifraga tridactylites (Saxifragaceae) from natural and man-made habitats. Conserv Genet 8:893–902

    Article  CAS  Google Scholar 

  • Reisch C, Bernhardt-Römermann M (2014) The impact of study design and life history traits on genetic variation of plants determined with AFLPs. Plant Ecol 215:1493–1511

    Article  Google Scholar 

  • Rogers SO, Bendich AJ (1994) Extraction of total cellular DNA from plants, algae and fungi. In: G SB (ed) Plant Molecular Biology Manual. Springer, Dordrecht, pp 183–190 R.A. S,

    Chapter  Google Scholar 

  • Schoen D, Brown A (2001) The conservation of wild plant species in seed banks: attention to both taxonomic coverage and population biology will improve the role of seed banks as conservation tools. AIBS Bull 51:960–966

    Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    Article  CAS  PubMed  Google Scholar 

  • Török P, Deák B, Vida E, Valkó O, Lengyel S, Tóthmérész B (2010) Restoring grassland biodiversity: Sowing low-diversity seed mixtures can lead to rapid favourable changes. Biol Conserv 143:806–812

    Article  Google Scholar 

  • Ukrainetz NK, O’Neill GA, Jaquish B (2011) Comparison of fixed and focal point seed transfer systems for reforestation and assisted migration: a case study for interior spruce in British Columbia. Can J Forest Res 41:1452–1464

    Article  Google Scholar 

  • Van Treuren R, Bijlsma R, Ouborg NJ, Kwak MM (1994) Relationships between plant density, outcrossing rates and seed set in natural and experimental populations of Scabiosa columbaria. J Evol Biol 7:287–302

    Article  Google Scholar 

  • Vekemans X (2002) AFLP-SURV version 1.0. In: Distributed by the author. Laboratoire de Génétique et Ecologie Végétale, Université Libre de Bruxelles, Belgium

  • Walker EA, Hermann JM, Kollmann J (2015) Grassland restoration by seeding: seed source and growth form matter more than density. Appl Veg Sci 18:368–378

    Article  Google Scholar 

  • Young TP, Petersen DA, Clary JJ (2005) The ecology of restoration: historical links, emerging issues and unexplored realms. Ecol Lett 8:662–673

    Article  Google Scholar 

  • Zahlheimer W (2009) Autochthone begrünung: grundsätzliches und aktuelles. Naturschutz Niederbayern 6:81–91

    Google Scholar 

Download references

Acknowledgements

We are obliged to the ALE for great commitment and financial support. Furthermore, we would like to thank Petra Schitko, Michaela Powolny and Christina Fischer for their help in the Lab, Anja Metko and Florian Wagner for their help with FCM, Sabine Fischer for assistance with the maps and Peter Poschlod for his generous support and many discussions. Two anonymous reviewers provided many helpful comments to improve our manuscript.

Author information

Authors and Affiliations

Authors

Contributions

C.R. conceived and designed the study. F.K. collected the data and performed the analyses. Both authors contributed to manuscript writing.

Corresponding author

Correspondence to Christoph Reisch.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 194 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaulfuß, F., Reisch, C. Restoration of grasslands using commercially produced seed mixtures: genetic variation within and among natural and restored populations of three common grassland species. Conserv Genet 20, 373–384 (2019). https://doi.org/10.1007/s10592-018-01138-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-018-01138-0

Keywords

Navigation