Skip to main content

Advertisement

Log in

Exploring and conserving a “microcosm”: whole-population genetic characterization within a refugial area of the endemic, relict conifer Picea omorika

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The last resort for conservation of rare tree populations in refugial areas under high risk of climate driven extinction may be ex situ conservation and assisted translocation. Although such actions require detailed knowledge about the spatial scale and heterogeneity of the within-population distribution of genetic diversity, it is still unknown whether fine-scale spatial genetic structure (FSGS) is present in refugial populations of forest trees. In order to address this issue, we carried out the first whole-population genetic characterisation of a small and isolated refugial population of the IUCN red-listed Serbian spruce [Picea omorika (Panč.) Purk.] from the Balkans. All 418 adult individuals were georeferenced and genotyped at nuclear EST-SSRs and at a mitochondrial (mtDNA) locus. Spatial autocorrelation analyses provided only a simplified description of FSGS, which is concordant with findings in wind-pollinated species with limited seed dispersal. However, Bayesian analysis revealed three heterogeneous, highly differentiated (pairwise G’ ST > 0.3), and spatially localised sub-populations showing only partial overlap with the distribution of mtDNA haplotypes. Such complex structure in only 0.34 ha, resulting mainly from historical events, restrictions to gene flow and high local density, was undetected in previous work based on more traditional sampling schemes for population genetics surveys. We demonstrate the usefulness of sampling schemes leaning towards a whole-population genetic characterisation in mining the finest characteristics of FSGS, and argue that our understanding of genetic structuring in highly heterogeneous refugial regions at both macro- and micro-scales is still rather limited and often oversimplified. This has severe implications on conservation of plant biodiversity from these regions in terms of responses to global climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1:95–111

    Article  PubMed  PubMed Central  Google Scholar 

  • Aleksić MJ (2008) Genetic structure of natural populations of Serbian spruce [Picea omorika (Panč.) Purk.]. Dissertation, University of Natural Resources and Applied Life Sciences, Austria

  • Aleksić MJ, Geburek T (2010) Mitochondrial DNA reveals complex genetic structuring in a stenoendemic conifer Picea omorika [(Panč.) Purk.] caused by its long persistence within the refugial Balkan region. Plant Syst Evol 285:1–11

    Article  Google Scholar 

  • Aleksić JM, Geburek T (2014) Quaternary population dynamics of an endemic conifer, Picea omorika, and their conservation implications. Cons Genet 15:87–107

    Article  Google Scholar 

  • Aleksić MJ, Schueler S, Mengl M, Geburek T (2009) EST-SSRs developed for other Picea species amplify in Picea omorika and reveal high genetic variation in two natural populations. Belg J Bot 142:89–95

    Google Scholar 

  • Audigeos D, Brousseau L, Traissac S, Scotti - Saintagne C, Scotti I (2013) Molecular divergence in tropical tree populations occupying environmental mosaics. J Evol Biol 26:529–544

    Article  CAS  PubMed  Google Scholar 

  • Austerlitz F, Mariette S, Machon N, Gouyon P-H, Godelle B (2000) Effects of colonization process on genetic diversity: differences between annual plant and tree species. Genetics 154:1309–1321

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brousseau L, Bonal D, Cigna J, Scotti I (2013) Highly local environmental variability promotes intrapopulation divergence of quantitative traits: an example from tropical rain forest trees. Ann Bot 112:1169–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brousseau L, Postolache D, Lascoux M, Drouzas AD, Källman T, Leonarduzzi C et al (2016) Local adaptation in European firs assessed through extensive sampling across altitudinal gradients in southern Europe. PLoS One 11:e0158216

    Article  PubMed  PubMed Central  Google Scholar 

  • Christmas MJ, Breed MF, Lowe AJ (2016) Constraints to and conservation implications for climate change adaptation in plants. Cons Genet 17:305–320

    Article  CAS  Google Scholar 

  • Chybicki IJ, Dzialuk A (2014) Bayesian approach reveals confounding effects of population size and seasonality on outcrossing rates in a fragmented subalpine conifer. Tree Genet Genomes 10:1723–1737

    Article  Google Scholar 

  • Čolić DB (1987) Spontana obnova Pančićeve omorike (Picea omorika Panč.) posle požara. Zaštita prirode 40:37–56 (in Serbian with English summary)

    Google Scholar 

  • Conifer Specialist Group (1998) Picea omorika. 2007 IUCN Red List of Threatened Species. http://www.iucnredlist.org/search/details.php/30313/summ

  • David A, Keathley D (1996) Inheritance of mitochondrial DNA in interspecific crosses of Picea glauca and Picea omorika. Can J For Res 26:428–432

    Article  Google Scholar 

  • de Lafontaine G, Ducousso A, Lefèvre S, Magnanou E, Petit RJ (2013) Stronger spatial genetic structure in recolonized areas than in refugia in the European beech. Mol Ecol 22:4397–4412

    Article  PubMed  Google Scholar 

  • Dharmarajan G, Beatty WS, Rhodes OE (2013) Heterozygote deficiencies caused by a Wahlund effect: dispelling unfounded expectations. J Wildl Manage 77:226–234

    Article  Google Scholar 

  • Dizdarević M, Lakušić R, Grgić P, L Kutleša, Pavlović B, Jonlija R (1984) Ekološke osnove poimanja reliktnosti vrste Picea omorika Pančić. Bilten Društva ekologa Bosne i Herzegovine, Ser A 2:5–56 (in Bosnian with English abstract)

    Google Scholar 

  • Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214

    Article  CAS  PubMed  Google Scholar 

  • Dyer RJ, Sork VL (2001) Pollen pool heterogeneity in shortleaf pine,Pinus echinataMill. Mol Ecol 10:859–866

    Article  CAS  PubMed  Google Scholar 

  • Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • El-Kassaby YA, Jaquish B (1996) Population density and mating pattern in western larch. J Hered 87:438–443

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fajardo A, Torres-Díaz C, Till-Bottraud I (2016) Disturbance and density-dependent processes (competition and facilitation) influence the fine-scale genetic structure of a tree species’ population. Ann Bot 117:67–77

    Article  PubMed  Google Scholar 

  • FAO (2013) State of Mediterranean Forests 2013. FAO, Rome

    Google Scholar 

  • Fukarek P (1951) Današnje rasprostranjenje Pančićeve omorike (Picea omorika Pančić) i neki podaci o njenim sastojinama. Godišnjak Biološkog Instituta u Sarajevu 3(1–2):141–198 (in Serbian with German summary)

    Google Scholar 

  • Gajić M, Vilotić D, Karadžić D, Mihajlović L, Isajev V (1994) Serbian spruce–Picea omorika (Pančić) Purkyně on the territory of the National Park Tara. The National Park Tara, Bajina Bašta (in Serbian)

    Google Scholar 

  • Gaut BS, Long AD (2003) The lowdown on linkage disequilibrium. Plant Cell 15:1502–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabherr RS, Gottfriend M, Pauli H (1994) Climatic effects on mountain plants. Nature 369:448–448

    Article  CAS  PubMed  Google Scholar 

  • Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Philos Trans R Soc Lond Ser B 351:1291–1298

    Article  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyze spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Hardy OJ, Maggia L, Bandou E, Breyne P, Caron H, Chevallier M-H et al (2006) Fine-scale genetic structure and gene dispersal inferences in 10 neotropical tree species. Mol Ecol 15:559–571

    Article  CAS  PubMed  Google Scholar 

  • Harms KE, Wright SJ, Calderón O, Hernández A, Herre EA (2000) Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature 404:493–495

    Article  CAS  PubMed  Google Scholar 

  • Hedrick PW (2005) A standardized genetic differentiation measure. Evol Int J org Evol 59:1633–1638

    Article  CAS  Google Scholar 

  • Hernández-Serrano A, Verdú M, González-Martínez SC, Pausas JG (2013) Fire structures pine serotiny at different scales. Am J Bot 100:2349–2356

    Article  PubMed  Google Scholar 

  • Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    Article  CAS  PubMed  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hijmans RJ, Guarino L, Marthur P (2012) DIVA-GIS version 7.5. http://www.diva-gis.org/

  • Hoban S, Schlarbaum S (2014) Optimal sampling of seeds from plant populations forex-situ conservation of genetic biodiversity, considering realistic population structure. Biol Cons 177:90–99

    Article  Google Scholar 

  • Hoban S, Strand A (2015) Ex situ seed collections will benefit from considering spatial sampling design and species’ reproductive biology. Biol Cons 187:182–191

    Article  Google Scholar 

  • Hossaert-McKey M, Valero M, Magda D, Jarry M, Cuguen J, Verne P (1996) The evolving genetic history of a population ofLathyrus sylvestris : evidence from temporal and spatial genetic structure. Evolution Int J org Evolution 50:1808–1821

    Google Scholar 

  • Hubbell SP, Ahumada JA, Condit R, Foster RB (2001) Local neighborhood effects on long-term survival of individual trees in a Neotropical forest. Ecol Res 16:859–875

    Article  Google Scholar 

  • IPCC (2014) Summary for policymakers. In: Field CB, Barros VR, Dokken DJ et al (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, pp 1–32

    Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Jansson S, Ingvarsson PK (2010) Cohort-structured tree populations. Heredity 105:331–332

    Article  CAS  PubMed  Google Scholar 

  • Jevtić J (1960) Neka zapažanja o urodu semena Pančićeve omorike na Tari. Šumartsvo 13(1–2):79–84 (in Serbian with French summary)

    Google Scholar 

  • Jump AS, Peñuelas J (2006) Genetic effects of chronic habitat fragmentation in a wind-pollinated tree. Proc Natl Acad Sci USA 103:8096–8100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jump AS, Mátyás C, Peñuelas J (2009) The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol Evol 24:694–701

    Article  PubMed  Google Scholar 

  • Jump AS, Huang TJ, Chou CH (2012) Rapid altitudinal migration of mountain plants in Taiwan and its implications for high altitude biodiversity. Ecography 35:204–210

    Article  Google Scholar 

  • Kalinowski ST (2005) hp-rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189

    Article  CAS  Google Scholar 

  • Kohlermann L (1950) Untersuchungen über die Windverbreitung der Früchte und Samen mitteleuropäischer Waldbäume. Forstwiss Cbl 69:606–624

    Article  Google Scholar 

  • Komlodi JM (1970) Studies on the vegetational history of Picea omorica Panc. on the Great Hungarian Plain. Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae. Sectio biologica 12:143–156

    Google Scholar 

  • Kremer A (1994) Diversité génétique et variabilité des caractéres phènotypiques chez les arbres forestiers. Genet Sel Evol 26(Suppl 1):105s–123s

    Article  Google Scholar 

  • Kremer A, Ronce O, Robledo-Arnuncio JJ, Guillaume F, Bohrer G et al (2012) Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol Lett 15:378–392

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuittinen H, Savolainen O (1992) Picea omorika is a self-fertile but outcrossing conifer. Heredity 68:183–187

    Article  Google Scholar 

  • Lefèvre F, Koskela J, Hubert J, Kraigher H, Longauer R, Olrik DC, et al (2013) Dynamic conservation of forest genetic resources in 33 European countries. Cons Biol 27:373–384

    Article  Google Scholar 

  • Lenoir J, Gégout JC, Marquet PA, De Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–1771

    Article  CAS  PubMed  Google Scholar 

  • Leonardi S, Piovani P, Scalfi M, Piotti A, Giannini R, Menozzi P (2012) Effect of habitat fragmentation on the genetic diversity and structure of peripheral populations of beech in Central Italy. J Hered 103:408–417

    Article  PubMed  Google Scholar 

  • Liepelt S, Cheddadi R, de Beaulieu JL, Fady B, Gömöry D, Hussendörfer E, Konnert M, Litt T, Longauer R, Terhürne-Berson R, Ziegenhagen B (2009) Postglacial range expansion and its genetic imprints in Abies alba (Mill.)—A synthesis from palaeobotanic and genetic data. Rev Palaeobot Palyno 153:139–149

    Article  Google Scholar 

  • Litrico I, Ronfort J, Verlaque R, Thompson JD (2005) Spatial structure of genetic variation and primary succession in the pioneer tree species Antirhea borbonica on La Réunion. Mol Ecol 14:1575–1584

    Article  CAS  PubMed  Google Scholar 

  • Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD (2009) The velocity of climate change. Nature 462:1052–1056

    Article  CAS  PubMed  Google Scholar 

  • Lockwood JD, Aleksić MJ, Zou J, Wang J, Liu J, Renner SS (2013) A new phylogeny for the genus Picea from plastid, mitochondrial and nuclear sequences. Mol Phylogenet Evol 69:717–727

    Article  PubMed  Google Scholar 

  • Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425

    Article  Google Scholar 

  • Malcolm JR, Markham A, Neilson RP, Garaci M (2002) Estimated migration rates under scenarios of global climate change. J Biogeogr 29:835–849

    Article  Google Scholar 

  • McCauley DE (1997) The relative contributions of seed and pollen movement to the local genetic structure ofSilene alba. J Hered 88:257–263

    Article  Google Scholar 

  • Morgante M, Vendramin GG, Rossi P (1991) Effects of stand density on outcrossing rate in two Norway spruce (Picea abies) populations. Can J Bot 69:2704–2708

    Article  Google Scholar 

  • Moritz C (1994) Defining ‘evolutionary significant units’ for conservation. Trends Ecol Evol 9:373–375

    Article  CAS  PubMed  Google Scholar 

  • Oddou-Muratorio S, Klein EK, Demesure-Musch B, Austerlitz F (2006) Real-time patterns of pollen flow in the wild-service tree, Sorbus torminalis (Rosaceae). III. Mating patterns and the ecological maternal neighborhood. Am J Bot 93:1650–1659

    Article  PubMed  Google Scholar 

  • Orr HA (2005) The genetic history of adaptation: a brief history. Nat Rev Genet 6:119–127

    Article  CAS  PubMed  Google Scholar 

  • Parmesan C, Hanley ME (2015) Plants and climate change: complexities and surprises. Ann Bot 116:849–864

    Article  PubMed  PubMed Central  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinform 28 :2537–2539

    Article  CAS  Google Scholar 

  • Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. Ann Rev Ecol Evol Syst 37:187–214

    Article  Google Scholar 

  • Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Cons Biol 12:844–855

    Article  Google Scholar 

  • Petit RJ, Hampe A, Cheddadi R (2005) Climate changes and tree phylogeography in the Mediterranean. Taxon 54:877–885

    Article  Google Scholar 

  • Piotti A, Leonardi S, Piovani P, Scalfi M, Menozzi P (2009) Spruce colonization at treeline: where do those seeds come from? Heredity 103:136–145

    Article  CAS  PubMed  Google Scholar 

  • Piotti A, Leonardi S, Buiteveld J, Geburek T, Gerber S, Kramer K, et al (2012) Comparison of pollen gene flow among four European beech (Fagus sylvatica L.) populations characterized by different management regimes. Heredity 108:322–331

    Article  CAS  PubMed  Google Scholar 

  • Piotti A, Leonardi S, Heuertz M, Buiteveld J, Geburek T, Gerber S et al (2013) Within-population genetic structure in beech (Fagus sylvatica L.) stands characterized by different disturbance histories: does forest management simplify population substructure? PLoS One 8:e73391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piry S, Luikar G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ran JH, Shen TT, Liu WJ, Wang PP, Wang XQ (2015) Mitochondrial introgression and complex biogeographic history of the genus Picea. Mol Phylogenet Evol 93:63–76

    Article  PubMed  Google Scholar 

  • Ravazzi C (2002) Late Quaternary history of spruce in southern Europe. Rev Palaeobot Palynol 120:131–177

    Article  Google Scholar 

  • Richards CM, Antolin MF, Reilley A, Poole J, Walters C (2007) Capturing genetic diversity of wild populations for ex situ conservation: Texas wild rice (Zizania texana) as a model. Genet Resour Crop Evol 54:837–848

    Article  Google Scholar 

  • Rieseberg LH (1995) The role of hybridization in evolution: old wine in new skins. Am J Bot 82:944–953

    Article  Google Scholar 

  • Robledo-Arnuncio JJ, Collada C, Alia R, Gil L (2005) Genetic structure of montane isolates of Pinus sylvestris L. in a Mediterranean refugial area. J Biogeogr 32:595–605

    Article  Google Scholar 

  • Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Rungis D, Bérubé Y, Zhang J, Ralph S, Ritland CE, Ellis BE et al (2004) Robust simple sequence repeat markers for spruce (Picea spp.) from expressed sequence tags. Theor Appl Genet 109:1283–1294

    Article  CAS  PubMed  Google Scholar 

  • Sagnard F, Oddou-Muratorio S, Pichot C, Vendramin GG, Fady B (2011) Effects of seed dispersal, adult tree and seedling density on the spatial genetic structure of regeneration at fine temporal and spatial scales. Tree Genet Genomes 7 :37–48

    Article  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  CAS  PubMed  Google Scholar 

  • Scotti I, Gugerli F, Pastorelli R, Sebastiani F, Vendramin GG (2008) Maternally and paternally inherited molecular markers elucidate population patterns and inferred dispersal processes on a small scale within a subalpine stand of Norway spruce (Picea abies [L.] Karst.). For Ecol Manag 255:3806–3812

    Article  Google Scholar 

  • Scotti I, González-Martínez SC, Budde KB, Lalagüe H (2016) Fifty years of genetic studies: what to make of the large amounts of variation found within populations? Ann For Sci 73:69–75

    Article  Google Scholar 

  • Slavov GT, Leonardi S, Adams WT, Strauss SH, DiFazio SP (2010) Population substructure in continuous and fragmented stands of Populus trichocarpa. Heredity 105:348–357

    Article  CAS  PubMed  Google Scholar 

  • Steinitz O, Troupin D, Vendramin GG, Nathan R (2011) Genetic evidence for a Janzen–Connell recruitment pattern in reproductive offspring of Pinus halepensistrees. Mol Ecol 20:4152–4164

    Article  CAS  PubMed  Google Scholar 

  • Stewart JR, Lister AM, Barnes I, Dalén L (2010) Refugia revisited: individualistic responses of species in space and time. Proc R Soc B 277:661–671

    Article  PubMed  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC et al (2004) Extinction risk from climate change. Nature 427:145–148

    Article  CAS  PubMed  Google Scholar 

  • Thuiller W (2007) Biodiversity: climate change and the ecologist. Nature 448:550–552

    Article  CAS  PubMed  Google Scholar 

  • Trapnell DW, Hamrick JL, Ishibashi CD, Kartzinel TR (2013) Genetic inference of epiphytic orchid colonization; it may only take one. Mol Ecol 22:3680–3692

    Article  PubMed  Google Scholar 

  • Troupin D, Nathan R, Vendramin GG (2006) Analysis of spatial genetic structure in an expanding Pinus halepensis population reveals development of fine-scale genetic clustering over time. Mol Ecol 15:3617–3630

    Article  CAS  PubMed  Google Scholar 

  • Tucić B, Stojković B (2001) Shade avoidance syndrome in Picea omorika seedlings: a growth-room experiment. J Evol Biol 14:444–455

    Article  Google Scholar 

  • Unger GM, Konrad H, Geburek T (2011) Does spatial genetic structure increase with altitude? An answer from Picea abies in Tyrol, Austria. Plant Syst Evol 292:133–141

    Article  Google Scholar 

  • Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935

    Article  CAS  PubMed  Google Scholar 

  • Vidaković M (1991) Conifers, morphology and variation, 2nd edn. Grafički zavod Hrvatske, Zagreb

    Google Scholar 

  • Wahlund S (1928) Zusammensetzung von Populationen und Korrelationserscheinungen von Standpunkt der Vererbungslehre aus betrachtet. Hereditas 11:65–106 [English translation In: Weiss KM, Ballanoff PA (eds) Demographic genetics. Dowden, Hutchinson and Ross Inc, Stroudsburg, Pennsylvania, USA, pp 224–263]

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJ, et al (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  PubMed  Google Scholar 

  • Wright SJ, Muller-Landau HC, Calderón O, Hernandéz A (2005) Annual and spatial variation in seedfall and seedling recruitment in a neotropical forest. Ecology 86:848–860

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Republic of Austria, Bioversity International, Research Grant 173005 of the Ministry of Education and Science of the Republic of Serbia, the COST Action FP1202 and the Italian MIUR project “Biodiversitalia” (RBAP10A2T4). The authors would like to thank M. Mengl, L. Weißenbacher, M. Josipović, D. Milekić, C. Leonarduzzi, C Bondani and Milovan for assistance in the field, and N. Kuzmanović for extracting climate data. All samples were collected with the permission of the Ministry of Energy, Development and Environmental Protection of the Republic of Serbia, and support of the Tara National Park, Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Aleksić.

Additional information

J. M. Aleksić and A. Piotti have contributed equally to the work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksić, J.M., Piotti, A., Geburek, T. et al. Exploring and conserving a “microcosm”: whole-population genetic characterization within a refugial area of the endemic, relict conifer Picea omorika . Conserv Genet 18, 777–788 (2017). https://doi.org/10.1007/s10592-017-0926-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-017-0926-x

Keywords

Navigation