Skip to main content
Log in

Persistence of the gypsophile Lepidospartum burgessii (Asteraceae) through clonal growth and limited gene flow

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Lepidospartum burgessii is a rare gypsophilic shrub with limited distribution in New Mexico and Texas. Most of the known plants are restricted to two large populations, with a few small, isolated populations scattered in the surrounding area. The low recruitment observed in the two largest populations may be due to low seed set resulting from high inbreeding and/or self-incompatibility. We used eight microsatellite loci to quantify diversity, relatedness, inbreeding, population structure, and frequency of clonal reproduction. Seed collections were made to quantify seed set and germination rates. Overall, there was a moderate level of clonal diversity within patches of L. burgessii indicating asexual growth is important for population persistence. Inbreeding coefficients were high both between and within populations. Most patches showed a significant level of relatedness between individuals. At a fine scale, patches within populations were significantly different from each other, however when all patches were combined, the two populations of L. burgessii were not genetically distinct. Compared to a population of its common congener, Lepidospartum latisquamum, L. burgessii populations had similar measures of diversity, more clonal reproduction, and lower germination rates. High relatedness and inbreeding may explain the low seed set and recruitment in L. burgessii, however factors such as insect herbivory and precipitation changes may further depress recruitment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen CD (2007) Interactions across spatial scales among forest dieback, fire, and erosion in northern New Mexico landscapes. Ecosystems 10:797–808

    Article  Google Scholar 

  • Amat ME, Silvertown J, Vargas P (2013) Strong spatial genetic structure reduces reproductive success in the critically endangered plant genus Pseudomisopates. J Her 104:692–703

    Article  Google Scholar 

  • Arnaud-Haond S, Alberto F, Teixeira S, Procaccini G, Serrao EA, Duarte CM (2005) Assessing genetic diversity in clonal organisms: low diversity or low resolution? Combining power and cost efficiency in selecting markers. J Her 96:434–440

    Article  CAS  Google Scholar 

  • Brennan AC, Harris SA, Hiscock SJ (2013) The population genetics of sporophytic self-incompatibility in three hybridizing Senecio (Asteraceae) species with contrasting population histories. Evolution 67:1347–1367

    PubMed  Google Scholar 

  • Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kastens JH, Floyd ML, Belnap J, Anderson JJ, Myers OB, Meyer CW (2005) Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci USA 102:15144–15148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byers DL, Meagher TR (1997) A comparison of demographic characteristics in a rare and common species of Eupatorium. Ecol Appl 7:519–530

    Article  Google Scholar 

  • Calflora (2013) Lepidospartum latisquamum S. Watson The Calflora Database. http://www.calflora.org/cgi-bin/species_query.cgi?where-taxon=Lepidospartum+latisquamum. Accessed May 21 2013

  • Charlesworth D (1985) Distribution of dioecy and self-incompatibility in angiosperms. In: Greenwoog PJ, Harvey PH, Slatkin M (eds) Evolution: essays in honor of John Maynard Smith. Cambridge University Press, Cambridge, pp 237–268

    Google Scholar 

  • Clark AG, Hubisz MJ, Bustamante CD, Williamson SH, Nielsen R (2005) Ascertainment bias in studies of human genome-wide polymorphism. Genome Res 15:1496–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Coulon A, Fitzpatrick JW, Bowman R, Stith BM, Makarewich CA, Stenzler LM, Lovette IJ (2008) Congruent population structure inferred from dispersal behaviour and intensive genetic surveys of the threatened Florida scrub-jay (Aphelocoma cœrulescens). Mol Ecol 17:1685–1701

    Article  CAS  PubMed  Google Scholar 

  • Davis J, Childers D, Kuhn D (1999) Clonal variation in a Florida Bay Thalassia testudinum meadow: molecular genetic assessment of population structure. Mar Ecol Prog Ser 186:127–136

    Article  Google Scholar 

  • De Mauro MM (1993) Relationship of breeding system to rarity in the lakeside daisy (Hymenoxys acaulis var. glabra). Conserv Biol 7:542–550

    Article  Google Scholar 

  • Dorken ME, Eckert CG (2001) Severely reduced sexual reproduction in northern populations of a clonal plant, Decodonverticillatus (Lythraceae). J Ecol 89:339–350

    Article  Google Scholar 

  • Duminil J, Hardy OJ, Petit RJ (2009) Plant traits correlated with generation time directly affect inbreeding depression and mating system and indirectly genetic structure. BMC Evol Biol 9:177

    Article  PubMed  PubMed Central  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Eriksson O (1989) Seedling dynamics and life histories in clonal plants. Oikos 55:231–238

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fant JB, Holmstrom RM, Sirkin E, Etterson JR, Masi S (2008) Genetic structure of threatened native populations and propagules used for restoration in a clonal species, American Beachgrass (Ammophila breviligulata Fern.). Restor Ecol 16:594–603

    Article  Google Scholar 

  • Fant JB, Kramer A, Sirkin E, Havens K (2013) Genetics of reintroduced populations of the narrowly endemic thistle, Cirsium pitcheri (Asteraceae). Botany 91:301–308

    Article  Google Scholar 

  • Fant JB, Havens K, Keller JM, Radosavljevic A, Yates ED (2014) The influence of contemporary and historic landscape features on the genetic structure of the sand dune endemic, Cirsium pitcheri (Asteraceae). Heredity 112:519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández-Mazuecos M, Jiménez-Mejías P, Rotllan-Puig X, Vargas P (2014) Narrow endemics to Mediterranean islands: moderate genetic diversity but narrow climatic niche of the ancient, critically endangered Naufraga (Apiaceae). Perspect Plant Ecol Evol Syst 16:190–202

    Article  Google Scholar 

  • Fiedler PL (1987) Life history and population dynamics of rare and common Mariposa Lilies (Calochortus Pursh: liliaceae). J Ecol 75:977–995

    Article  Google Scholar 

  • Frankham R, Ballou JD, Eldridge MDB, Lacy RC, Ralls K, Dudash MR, Fenster CB (2011) Predicting the probability of outbreeding depression. Conserv Biol 25:465–475

    Article  PubMed  Google Scholar 

  • Galpern P, Manseau M, Hettinga P, Smith K, Wilson P (2012) Allelematch: an R package for identifying unique multilocus genotypes where genotyping error and missing data may be present. Mol Ecol Resour 12:771–778

    Article  PubMed  Google Scholar 

  • Gitzendanner MA, Soltis PS (2000) Patterns of genetic variation in rare and widespread plant congeners. Am J Bot 87:783–792

    Article  CAS  PubMed  Google Scholar 

  • Goudet J (2005) hierfstat, a package for r to compute and test hierarchical F-statistics. Mol Ecol Notes 5:184–186

    Article  Google Scholar 

  • Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Philos Trans R Soc Lond B 351:1291–1298

    Article  Google Scholar 

  • Hannan GL, Orick MW (2000) Isozyme diversity in Iris cristata and the threatened glacial endemic I. Lacustris (Iridaceae). Am J Bot 87:293–301

    Article  CAS  PubMed  Google Scholar 

  • Hao YQ, Zhao XF, She DY, Xu B, Zhang DY, Liao WJ (2012) The role of late-acting self-incompatibility and early-acting inbreeding depression in governing female fertility in monkshood. Aconitum kusnezoffii. PLoS One 7:e47034

    Article  CAS  PubMed  Google Scholar 

  • Jiménez-Mejías P, Fernández-Mazuecos M, Amat ME, Vargas P (2015) Narrow endemics in European mountains: high genetic diversity within the monospecific genus Pseudomisopates (Plantaginaceae) despite isolation since the late Pleistocene. J Biogeogr 42:1455–1468

    Article  Google Scholar 

  • Kim E, Zaya D, Fant J, Ashley M (2014) Genetic factors accelerate demographic decline in rare Asclepias species. Conserv Genet 16(2):1–11

    CAS  Google Scholar 

  • Ladyman JAR, Gegick P (2000) The status of Lepidospartum burgessii (Burgess Broomshrub or Gypsum Broomscale). In: Maschinski J, Holter L (eds) Southwestern rare and endangered plants: Proceedings of the Third Conference. U.S. Department of Agriculture, Fort Collins, pp 116–127

    Google Scholar 

  • Ladyman JAR, Delay L, Gegick P, Bogan M (1999) Status and reproductive biology of Lepidospartum burgessii (Burgess broomshrub or gypsum broomscale). (ed. Program NH), p. 110. NM Heritage Program, University of NM and USDI Geological Survey at University of NM

  • Lesica P, Yurkewycz R, Crone EE (2006) Rare plants are common where you find them. Am J Bot 93:454–459

    Article  PubMed  Google Scholar 

  • Liu G, Hegarty MJ, Edwards KJ, Hiscock SJ, Abbott RJ (2004) Isolation and characterization of microsatellite loci in Senecio. Mol Ecol Notes 4:611–614

    Article  CAS  Google Scholar 

  • Lynch M, Ritland K (1999) Estimation of pairwise relatedness with molecular markers. Genetics 152:1753–1766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moore MJ, Jansen RK (2007) Origins and biogeography of gypsophily in the Chihuahuan Desert plant group Tiquilia Subg. Eddya (Boraginaceae). Syst Bot 32:392–414

    Article  Google Scholar 

  • Muirhead CA, Lande R (1997) Inbreeding depression under joint selfing, outcrossing, and asexuality. Evolution 51:1409–1415

    Article  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:000–283

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse P (2012) GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28(19):2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelser PB, Kennedy AH, Tepe EJ, Shidler JB, Nordenstam B, Kadereit JW, Watson LE (2010) Patterns and causes of incongruence between plastid and nuclear Senecioneae (Asteraceae) phylogenies. Am J Bot 97:856–873

    Article  CAS  PubMed  Google Scholar 

  • Prati D, Schmid B (2000) Genetic differentiation of life-history traits within populations of the clonal plant Ranunculus reptans. Oikos 90:442–456

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  CAS  PubMed  Google Scholar 

  • Travis SE, Proffitt CE, Ritland K (2004) Population structure and inbreeding vary with successional stage in created Spartina alterniflora marshes. Ecol Appl 14:1189–1202

    Article  Google Scholar 

  • Turner BL (1977) Lepidospartum burgessii (Asteraceae, Senecioneae), a remarkable new gypsophilic species from Trans-Pecos Texas. Wrightia 5:354–355

    Google Scholar 

  • USDA (2013) Lepidospartum latisquamum S. Watson: Nevada broomsage. http://plants.usda.gov/java/profile?symbol=LELA4. Accessed May 21 2013

  • Vallejo-Marin M, Dorken ME, Barrett SCH (2010) The ecological and evolutionary consequences of clonality for plant mating. Annu Rev Ecol Evol Syst 41:193–213

    Article  Google Scholar 

  • Valtueña FJ, Rodriguez-Riano T, Espinosa F, Ortega-Olivencia A (2010) Self-sterility in two Cytisus species (Leguminosae, Papilionoideae) due to early-acting inbreeding depression. Am J Bot 97:123–135

    Article  PubMed  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Wagenius S, Lonsdorf E, Neuhauser C (2007) Patch aging and the S-allee effect: breeding system effects on the demographic response of plants to habitat fragmentation. Am Nat 169:383–397

    Article  PubMed  Google Scholar 

  • Wagenius S, Hangelbroek HH, Ridley CE, Shaw RG (2010) Biparental inbreeding and interremnant mating in a perennial prairie plant: fitness consequences for progeny in their first eight years. Evolution 64:761–771

    Article  PubMed  Google Scholar 

  • Widen B, Cronberg N, Widen M (1994) Genotypic diversity, molecular markers and spatial distribution of genets in clonal plants, a literature survey. Folia Geobotan 29:245–263

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the National Fish and Wildlife Foundation, the Mohamed Bin Zayed Conservation Fund, and the BLM Plant Conservation Program for funding. We thank Guadalupe National Park, the Conservation Land Management internship program and its participants for field work, John Keller for laboratory work, and Dean Tonnena for collections. Comments by anonymous reviewers greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelyn Webb Williams.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, E.W., Cheung, R., Siegel, C. et al. Persistence of the gypsophile Lepidospartum burgessii (Asteraceae) through clonal growth and limited gene flow. Conserv Genet 17, 1201–1211 (2016). https://doi.org/10.1007/s10592-016-0855-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-016-0855-0

Keywords

Navigation