Skip to main content

Advertisement

Log in

Long-distance pollen dispersal ensures genetic connectivity of the low-density tree species, Eurycorymbus cavaleriei, in a fragmented karst forest landscape

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Karst forest in southwest China represents one of the world’s most spectacular examples of tropical-subtropical karst landscapes and harbours high floristic richness and endemism. Many plant species tend to occur in naturally isolated patches due to the edaphic and topographic heterogeneity and are suffering an increasing stress of habitat deterioration due to both extensive human activities and global climate change in the area. Here Eurycorymbus cavaleriei was selected as a representative insect-pollinated plant species with low density to assess the pollen dispersal and mating patterns of such limestone associated trees. Paternity analysis revealed substantial long-distance pollination events, with a high level of pollen immigration (27.9–41.9 %) from outside the study sites over distance of at least 4,000 m. Pollen dispersal best fits an exponential power model with a fat-tailed (b < 1) feature and the average pollen dispersal distance was over 2,000 m inferred by the twogener analysis. Despite the dioecious nature, a small amount of biparental inbreeding and moderate correlated paternity were detected based on the multilocus mating system analysis. Relatively few pollen donors (N ep = 3.5–7.0) and substantial variance in male reproductive success (21–24 % of males were responsible for 52–58 % of pollinations) were detected. These results have important implications for the genetic conservation and management of E. cavaleriei. Extensive pollen dispersal provides evidence for substantial intra- and/or inter-patch pollinator movement, which seems promising for E. cavaleriei and other trees with generalized pollination system in karst forest landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aguilar R, Quesada M, Ashworth L, Yvonne Herrerias D, Lobo J (2008) Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol Ecol 17:5177–5188

    Article  PubMed  Google Scholar 

  • Austerlitz F, Dick CW, Dutech C, Klein EK, Oddou-Muratorio S, Smouse PE, Sork VL (2004) Using genetic markers to estimate the pollen dispersal curve. Mol Ecol 13:937–954

    Article  PubMed  Google Scholar 

  • Bittencourt JVM, Sebbenn AM (2008) Pollen movement within a continuous forest of wind-pollinated Araucaria angustifolia, inferred from paternity and twogener analysis. Conserv Genet 9:855–868

    Article  Google Scholar 

  • Byrne M, Elliott CP, Yates C, Coates DJ (2008) Maintenance of high pollen dispersal in Eucalyptus wandoo, a dominant tree of the fragmented agricultural region in Western Australia. Conserv Genet 9:97–105

    Article  Google Scholar 

  • Chen J, Wang Y, Kang M, Zhou J, Huang H (2006) Isolation and characterization of microsatellite loci in Eurycorymbus cavaleriei, a dioecious endemic tree species in China. Mol Ecol Notes 6:160–162

    Article  CAS  Google Scholar 

  • Christopher GE, Kalisz S, Geber MA, Sargent R, Elle E et al (2009) Plant mating systems in a changing world. Trends Ecol Evol 25:35–43

    Google Scholar 

  • Côrtes MC, Uriarte M, Lemes MR, Gribel R, Kress WJ, Smouse PE, Bruna EM (2013) Low plant density enhances gene dispersal in the Amazonian understory herb Heliconia acuminate. Mol Ecol 22:5716–5729

    Article  PubMed  Google Scholar 

  • Devaux C, Lavigne C, Austerlitz F, Klein EK (2007) Modelling and estimating pollen movement in oilseed rape (Brassica napus) at the landscape scale using genetic markers. Mol Ecol 16:487–499

    Article  PubMed  CAS  Google Scholar 

  • Dow BD, Ashley MV (1996) Microsatellite analysis of seed dispersal and parentage of sampling in bur oak, Quercus macrocarpa. Mol Ecol 5:615–627

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839

    Article  PubMed  Google Scholar 

  • Ennos RA (1994) Estimating the relative rates of pollen and seed migration among plant populations. Heredity 72:250–259

    Article  Google Scholar 

  • Fénart S, Austerlitz F, Cuguen J, Jean-Francois Arnaud (2007) Long distance pollen-mediated gene flow at a landscape level: the weed beet as a case study. Mol Ecol 16:3801–3813

    Article  PubMed  Google Scholar 

  • Feres JM, Sebbenn AM, Guidugli MC (2012) Mating system parameters at hierarchical levels of fruits, idnividuals and populations in the Brazilian insect-pollinated tropical tree, Tabebuia roseo-alba (Bignoniaceae). Conserv Genet 13:393–405

    Article  Google Scholar 

  • Fu LK, Jin JM (1992) China Plant Red Data Book- Rare and Endangered Plant. Science Press, Beijing

    Google Scholar 

  • Fuchs EJ, Hamrick JL (2011) Mating system and pollen flow between remnant populations of the endangered tropical trees, Guaiacum sanctum (Zygophyllaceae). Conserv Genet 12:175–185

    Article  Google Scholar 

  • Gao PX, Kang M, Wang J, Ye QG, Huang HW (2009) Neither biased sex ratio nor spatial segregation of the sexes in the subtropical dioecious tree Eurycorymbus cavaleriei (Sapindaceae). J Integr Plant Biol 51:604–613

    Article  PubMed  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 29.3). http://www.unil.ch/izea/softwares/fstat.html (accessed September 2010)

  • Hobbs RJ, Yates CJ (2003) Impacts of ecosystem fragmentation on plant populations: generalising the idiosyncratic. Aust J Bot 51:471–488

    Article  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Kramer AT, Ison JL, AshleyMV Howe HF (2008) The paradox of forest fragmentation genetics. Conserv Biol 22:878–885

    Article  PubMed  Google Scholar 

  • Li Y, Wang S, Xie D, Shao J (2004) Landscape ecological characteristics and ecological construction of karst mountain areas in southwest China. Ecol Environ Sci 13:702–706

    Google Scholar 

  • Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655

    Article  PubMed  CAS  Google Scholar 

  • Mittermeier RA, Gil PR, Hoffmann M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J, da Fonseca GAB (2004) Hotspots revisited: Earth’s biologically richest and most endangered terrestrial ecoregions. University of Chicago Press, Chicago

    Google Scholar 

  • Ottewell K, Grey E, Castillo F, Karubian J (2012) The pollen dispersal kernel and mating system of an insect-pollinated tropical palm, Oenocarpus bataua. Heredity 109:332–339

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ritland K (2002) Extensions of models for the estimation of mating systems using n independent loci. Heredity 88:221–228

    Article  PubMed  Google Scholar 

  • Ritland K (2009) Multilocus mating system program mltr. Version 3.4. University of British Columbia, Vancouver. http://genetics.forestry.ubc.ca/ritland/programs.html (accessed December 2010)

  • Robledo-Arnuncio JJ, Austerlitz F, Smouse PE (2006) A new method of estimating the pollen dispersal curve independently of effective density. Genetics 173:1033–1045

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Robledo-Arnuncio JJ, Austerlitz F, Smouse PE (2007) poldisp: a software package for indirect estimation of contemporary pollen dispersal. Mol Ecol Notes 7:763–766

    Article  Google Scholar 

  • Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Smouse PE, Dyer RJ, Westfall RD, Sork VL (2001) Two-generation analysis of pollen flow across a landscape I: male gamete heterogeneity among females. Evolution 55:260–271

    Article  PubMed  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: Principles and Practices of Statistics in Biological Research, 3rd edn. New York, W.H, Freeman and Company

    Google Scholar 

  • Sork VL, Smouse PE (2006) Genetic analysis of landscape connectivity in tree populations. Landscape Ecol 21:821–836

    Article  Google Scholar 

  • Sork VL, Smouse PE, Apsit VJ, Dyer RJ, Westfall RD (2005) A two-generation analysis of pollen pool genetic structure in flowering dogwood, Cornus florida (Cornaceae), in the Missouri Ozarks. Am J Bot 92:262–271

    Article  PubMed  CAS  Google Scholar 

  • Sun M, Ritland K (1998) Mating system of yellow starthistle (Centaurea solstitialis), a successful colonizer in North America. Heredity 80:225–232

    Article  Google Scholar 

  • Tarazi R, Sebbenn AM, Kageyama PY, Vencovsky R (2013) Edge effects enhance selfing and seed harvesting efforts in the insect-pollinated Neotropical tree Copaifera langsdorffii (Fabaceae). Heredity 110:578–585

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Wang J, Ye Q, Kang M, Huang H (2008) Novel polymorphic microsatellite loci and patterns of pollen-mediated gene flow in an ex situ population of Eurycorymbus cavaleriei (Sapindaceae) as revealed by categorical paternity analysis. Conserv Genet 9:559–567

    Article  CAS  Google Scholar 

  • Wang J, Gao P, Kang M, Lowe AJ, Huang HW (2009) Refugia within refugia: the case study of a canopy tree (Eurycorymbus cavaleriei) in subtropical tree. J Biogeogr 36:2156–2164

    Article  Google Scholar 

  • Wang J, Kang M, Gao PX, Huang H (2010) Contemporary pollen flow and mating patterns of a subtropical canopy tree Eurycorymbus cavaleriei in a fragmented agricultural landscape. Forest Ecol Manag 260:2180–2188

    Article  Google Scholar 

  • Watling JI, Donnelly MA (2006) Fragments as islands: a synthesis of faunal responses to habitat patchiness. Conserv Biol 20:1016–1025

    Article  PubMed  Google Scholar 

  • White GM, Boshier DH, Powell W (2002) Increased pollen flow counteracts fragmentation in a tropical dry forest, an example from Swietenia humilis Zuccarini. PNAS 99:2038–2042

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhu H (2007) The karst ecosystem of southern China and its biodiversity. Trop Forestry 35(Supplement):44–47

    Google Scholar 

Download references

Acknowledgments

We thank Gao P and the staff of Maolan and Mulun National Nature Reserve for their kind help with sample collection, S. Zhang for assistance with identifying insect species, J. Robledo-Arnuncio and A. Sebbenn for help with data analysis using the poldisp software package, and N. Ellstrand and Z. Yousaf for suggestions to improve the manuscript. This work was supported by National Natural Sciences Foundation of China (31000148).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 810 kb)

Supplementary material 2 (DOC 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Kang, M. & Huang, H. Long-distance pollen dispersal ensures genetic connectivity of the low-density tree species, Eurycorymbus cavaleriei, in a fragmented karst forest landscape. Conserv Genet 15, 1163–1172 (2014). https://doi.org/10.1007/s10592-014-0608-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-014-0608-x

Keywords

Navigation