Skip to main content
Log in

Genetic variability in relocated Père David’s deer (Elaphurus davidianus) populations—Implications to reintroduction program

  • Original Paper
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Since 1985, China has established three breeding herds of Père David’s deer: the Beijing Père David’s Deer Park (39°07′N, 116°03′E), the Dafeng Père David’s Deer Nature Reserve (33°05′N, 120°49′E) and Shishou (Tianezhou) Père David’s Deer Nature Reserve (29°49′N, 112°33′E), through reintroductions of about 30–40 founders. Since establishment, all three populations have grown steadily. However, genetic backgrounds in those populations are still unknown. We studied the genetic diversity in Père David’s deer and genetic consequences of population relocations in China. We revealed that genetic diversity was extremely low in Père David’s deer populations in China. Only a single mtDNA D-loop haplotype was found in the deer, furthermore, only five polymorphic microsatellite loci were screened out from 84 pairs of species-transferred primers. Genetic makeup in the three Père David’s deer populations were significantly different (P < 0.01). H E and allelic richness in the Tianezhou population were the highest (0.54, 2.60, n = 31), Beijing population (0.52, 2.4, n = 125) showed the second highest measures, while the Dafeng population (0.46, 2.39, n = 39) measured lowest. Our results suggest that effective management of a species of low genetic diversity like the Père David’s deer should consider the genetic background of each founder to make sure genetic variations are preserved in both source population and relocated population. Now, the Tianezhou population is the most appropriate source population in China when establishing new Père David deer populations in the wild.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. ABS12, AF5, AFR227, AGLA226, AGLA232, BL4, BM1225, BM1329, BM1706, BM203, BM2320, BM2934, BM4107, BM4440, BM4513, BM5004, BM757, BM888, BR3510, C217, CSSM26, CSSM26, CSSM29, CSSM39, CSSM41, CSSM43, HUJ175, IDVGA29, IDVGA3, IDVGA37, IDVGA39, IDVGA55, IDVGA8, ILSTS6, ILSTS93, INRA107, INRA121, INRA131, INRA169, JAB8, MGTG4B, NRAMP1, RBP3, RM12, RM178, RM188, RM95, RT1, RT23, RT5, T156, T172, T193, TEXAN15, TGLA10, TGLA127, TGLA226, TGLA337, TGLA378, TGLA40, TGLA431, and TGLA86 are from autosomes. BL22, and XBM31 are X-autosome-specific primers. BOV97M(DYS2), BRY.1(DYZ7), INRA008(DYS3), TSPY, UMN0103, UMN0301, UMN0304, UMN0307, UMN0311, UMN0406, UMN0504, UMN0705(TSPY-MS), UMN0920, UMN1113, UMN1201, UMN1203, UMN1307, UMN1514, UMN2303, and UMN3008 are Y-autosome-specific primers.

References

  • Belkhir K. et al (2001) GENETIX, logiciel sous WindowsTM pour la génétique des populations. Laboratoire Génome, Populations, Interactions CNRS UMR 5000, Université de Montpellier II, Montpellier, France

  • Briscoe DA, Malpica JM, Robertson A et al (1992) Rapid loss of genetic variation in large captive populations of Drosophila flies: implications for the genetic management of captive populations. Conserv Biol 6:416–425

    Article  Google Scholar 

  • Cao K (1993) Selection of a suitable area for re-introduction of wild Père David’s deer in China. In: Ohtaishi N, Sheng H (ed) Deer of China: biology and management, Elsevier Science Publishers B. V., Amsterdam, The Netherlands

  • Carnio J, Killmar L (1983) Identification techniques. In: Beck BB, Wemmer C (ed) The biology and management of an extinct species: Père David’s deer, Noyes Publications, Park Ridge, New Jersey, USA

  • Cross TF (2000) Genetic implications of translocation and stocking of fish species, with particular reference to Western Australia. Aquac Res 31:83–94

    Article  Google Scholar 

  • DeYoung RW, Demarais S, Honeycutt RL et al (2003) Genetic consequences of white-tailed deer (Odocoileus virginianus) restoration in Mississippi. Mol Ecol 12:3237–3252

    Article  PubMed  CAS  Google Scholar 

  • Earnhardt JM, Thompson SD, Marhevsky EA (2001) Interactions of target population size, population parameters, and program management on viability of captive populations. Zoo Biol 20:169–183

    Article  Google Scholar 

  • Eldridge MD, King JM, Loupis AK et al (1999) Unprecedented low levels of genetic variation and inbreeding depression in an island population of the Black-footed Rock-wallaby. Conserv Biol 13:531–541

    Article  Google Scholar 

  • Frankham R (2005) Stress and adaptation in conservation genetics. J Evolution Biol 18:750–755

    Article  CAS  Google Scholar 

  • Frankham R, Ballou J, Briscoe D (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Garner A, Rachlow J, Hicks J (2005) Patterns of genetic diversity and its loss in mammalian populations. Conserv Biol 19:1215–1221

    Article  Google Scholar 

  • Goudet J (1995) FSTAT (vers. 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Goudet J, Raymond M, de-Meeus T et al (1996) Testing differentiation in diploid populations. Genetics 144:1933–1940

    PubMed  CAS  Google Scholar 

  • Hauser L, Adcock GJ, Smith PJ et al (2002) Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (Pagrus auratus). P Natl Acad Sci USA 99:11742–11747

    Article  CAS  Google Scholar 

  • Hedrick PW, Gutierrez-Espeleta GA, Lee RN (2001) Founder effect in an island population of bighorn sheep. Mol Ecol 10: 851–857

    Article  PubMed  CAS  Google Scholar 

  • Hmwe SS, Zachos FE, Eckert I et al (2006) Conservation genetics of the endangered red deer from Sardinia and Mesola with further remarks on the phylogeography of Cervus elaphus corsicanus. Biol J Linnean Soc 88:691–701

    Article  Google Scholar 

  • Hoelzel AR, Dahlheim M, Stern SJ (1998) Low genetic variation among Killer whales (Orcinus orca) in the eastern north Pacific and genetic differentiation between foraging specialists. J Hered 89:121–128

    Article  PubMed  CAS  Google Scholar 

  • Jiang Z, Feng Z, Yu C et al (2000) Reintroduction and recovery of Père David’s deer in China. Wildlife Soc B 28(3):681–687

    Google Scholar 

  • Jiang Z, Li C, Zeng Y,et al (2004) “Harem defending” or “challenging”: alternative individual mating tactics in Père David’s deer under different time constraint. Acta Zool Sinica 50:706–713

    Google Scholar 

  • Jiang Z, Liu B, Zeng Y et al (1999) Attracted by the same sex or excluded by the opposite sex?-sexual segregation in Père David’s deer. Chinese Sci Bull 44:1803–1809

    Google Scholar 

  • Jones ML, Manton VJA (1983) History in captivity. In: Beck BB, Wemmer C (ed) The biology and management of an extinct species: Père David’s deer, Noyes Publications, Park Ridge, New Jersey, USA

  • Kraaijeveld-Smit F, Griffiths R, Moore R et al (2006) Captive breeding and the fitness of reintroduced species: a test of the responses to predators in a threatened amphibian. J Appl Ecol 43:360–365

    Article  Google Scholar 

  • Kuehn R, Schroeder W, Pirchner F et al (2003) Genetic diversity, gene flow and drift in Bavarian red deer populations (Cervus elaphus). Conserv Genet 4:157–166

    Article  CAS  Google Scholar 

  • Leberg PL (1993) Strategies for population reintroduction- effects of genetic- variability on population-growth and size. Conserv Biol 7:194–199

    Article  Google Scholar 

  • Liu W, Mariani P, Beattie C et al (2002) A radiation hybrid map for the bovine Y chromosome. Mamm Genome 13:320–326

    Article  PubMed  CAS  Google Scholar 

  • Margan SH, Roderick KN, Margaret EM et al. (1998) Single large or several small? Population fragmentation in the captive management of endangered species. Zoo Biol 17: 467–480

    Article  Google Scholar 

  • Matocq MD, Villablanca FX (2001) Low genetic diversity in an endangered species: recent or historic pattern? Biol Conserv 98:61–68

    Article  Google Scholar 

  • Miller B, Ralls K, Reading RP et al (1999) Biological and technical considerations of carnivore translocation: a review. Anim Conserv 2:59–68

    Article  Google Scholar 

  • Mock KE, Latch EK, Rhodes OE (2004) Assessing losses of genetic diversity due to translocation: long-term case histories in Merriam’s turkey (Meleagris gallopavo merriami). Conserv Genet 5:631–645

    Article  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–292

    Article  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  Google Scholar 

  • Ohtaishi N, Gao Y (1990) A review of the distribution of all species of deer (Tragulidae, Moschidae and Cervidae) in China. Mamm Rev 20:125–144

    Google Scholar 

  • Palkovacs EP, Oppenheimer AJ, Gladyshev E et al (2004) Genetic evaluation of a proposed introduction: the case of the greater prairie chicken and the extinct heath hen. Mol Ecol 13:1759–1769

    Article  PubMed  CAS  Google Scholar 

  • Pang J, Hoelze AR, Song Y et al (2003) Lack of mtDNA control region variation in Hainan Eld’s deer: consequence of a recent population bottleneck? Conserv Genet 4: 109–112

    Article  CAS  Google Scholar 

  • Park SDE (2001) Trypanotolerance in west African cattle and the population genetic effects of selection, Ph.D. thesis, Trinity College, University of Dublin

  • Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280–1283

    Article  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between population fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Russell WC, Thorne ET, Oakleaf R et al (1994) The genetic basis of Black-Footed ferret reintroduction. Conserv Biol 8:263–266

    Article  Google Scholar 

  • Ryder OA, Brisbin PC, Bowling AT et al (1981) Monitoring genetic variation in endangered species. In: Scudder G, Raveal J (eds), Proceedings of the second international congress on systematic and evolutionary biology. Hunt Institute for Botanical Documentation, Pittsburgh, pp. 417–424

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1996) Molecular cloning - a laboratory manual. 2nd edn. Cold Spring Harbor Press, Cold Spring Harbor, New York

    Google Scholar 

  • Schmitt T, Cizek O, Konvicka M (2005) Genetics of a butterfly relocation: large, small and introduced populations of the mountain endemic Erebia epiphron silesiana. Biol Conserv 123:11–18

    Article  Google Scholar 

  • Seddon PJ, Soorae PS (1999) Guidelines for subspecific substitutions in wildlife restoration projects. Conserv Biol 13:177–184

    Article  Google Scholar 

  • Slate J, Coltman DW, Goodman SJ et al (1998) Microsatellite loci are highly conserved in red deer (Cervus elaphus), sika deer (Cervus nippon) and Soay sheep (Ovis aries). Anim Genet 29:307–315

    Article  PubMed  CAS  Google Scholar 

  • Slate J, Marshall T, Pemberton J (2000) A retrospective assessment of the accuracy of the paternity inference program CERVUS. Mol Ecol 9:801–808

    Article  PubMed  CAS  Google Scholar 

  • Slate J, Van Stijn TC, Anderson RM et al (2002) A deer (subfamily Cervinae) genetic linkage map and the evolution of ruminant genomes. Genetics 160:1587–1597

    PubMed  CAS  Google Scholar 

  • Snyder NFR, Derrickson SR, Beissinger SR et al (1996) Limitations of captive breeding in endangered species recovery. Conserv Biol 10:338–348

    Article  Google Scholar 

  • Soulé M, Gilpin M, Conway W et al (1986) The millenium ark: How long a voyage, how many staterooms, how many passengers? Zoo Biol 5:101–113

    Article  Google Scholar 

  • Sowerby A (1949) Notes on the original habitat of Father David’s deer. Musee Heude Notes de Mammalogie, Shanhai. 4:3–19

    Google Scholar 

  • Sternicki T, Szablewski P, Szwaczkowski T (2003) Inbreeding effects on lifetime in David’s deer (Elaphurus davidianus, Milne Edwards 1866) population. J Appl Genet 44:175–83

    PubMed  Google Scholar 

  • Tenhumberg B, Tyre AJ, Shea K et al (2004) Linking wild and captive populations to maximize species persistence: optimal translocation strategies. Conserv Biol 18:1304–1314

    Article  Google Scholar 

  • Thévenon S, Couvet D (2002) The impact of inbreeding depression on population survival depending on demographic parameters. Anim Conserv 5:53–60

    Google Scholar 

  • Thévenon S, Thuy T, Ly LV et al (2004) Microsatellite analysis of genetic diversity of the Vietnamese sika deer (Cervus nippon pseudaxis). J Hered 95:11–18

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F et al (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Vernesi C, Crestanello B, Pecchioli E et al (2003) The genetic impact of demographic decline and reintroduction in the wild boar (Sus scrofa): A microsatellite analysis. Mol Ecol 12:585–595

    Article  PubMed  CAS  Google Scholar 

  • Viginier B, Peeters C, Brazier L et al (2004) Very low genetic variability in the Indian queenless ant (Diacamma indicum). Mol Ecol 13:2095–2100

    Article  PubMed  CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Williams CL, Serfass TL, Cogan R et al (2002) Microsatellite variation in the reintroduced Pennsylvania elk herd. Mol Ecol 11:1299–1310

    Article  PubMed  CAS  Google Scholar 

  • Wright S (1973) Evolution and the genetics of populations. Variability within and among natural populations, vol. 4.University of Chicago Press, Chicago

  • Yang R, Zhang L, Tang B et al (2003) Status of the Chinese Père David’s deer population. Chinese J Zoo 38:76–81

    Google Scholar 

  • Zhang B, Wei F, Li M et al (2004) A simple protocol for DNA extraction from faeces of the giant panda and lesser panda. Acta Zool Sinica 50:452–458

    CAS  Google Scholar 

  • Zhang Y, Ryder OA (1993) Mitochondrial DNA evolution in the Artoidea. P Natl Acad Sci USA 90:9557–9961

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank to Zhang Linyuan, Xia Jingshi, Zhong Zhenyu and Tang Baotian of the Beijing Père David’s deer Park, Ding Yuhua and Xu Anhong of the Dafeng Père David’s deer Natural Reserve, Wen Huajun and Li Pengfei of the Tianezhou Père David’s deer Natural Reserve for their kindly assists for sampling. We thank Dr. Michael Heiner for his help in editing the manuscript. We also acknowledge the Knowledge Innovation Project of the Chinese Academy of Sciences (CXTDS2005-4), Chinese Natural Science Foundation (No. 30270206, 30430120) for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, Y., Jiang, Z. & Li, C. Genetic variability in relocated Père David’s deer (Elaphurus davidianus) populations—Implications to reintroduction program. Conserv Genet 8, 1051–1059 (2007). https://doi.org/10.1007/s10592-006-9256-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-006-9256-0

Keywords

Navigation