Skip to main content
Log in

Rank-two update algorithm versus Frank–Wolfe algorithm with away steps for the weighted Euclidean one-center problem

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

The weighted Euclidean one-center (WEOC) problem is one of the classic problems in facility location theory, which is also a generalization of the minimum enclosing ball (MEB) problem. Given m points in \({\mathbb {R}}^{n}\), the WEOC problem computes a center point \(c\in {\mathbb {R}}^{n}\) that minimizes the maximum weighted Euclidean distance to m given points. The rank-two update algorithm is an effective method for solving the minimum volume enclosing ellipsoid (MVEE) problem. It updates only two components of the solution at each iteration, which was previously proposed in Cong et al. (Comput Optim Appl 51(1):241–257, 2012). In this paper, we further develop and analyze the rank-two update algorithm for solving the WEOC problem. At each iteration, the calculation of the optimal step-size for the WEOC problem needs to distinguish four different cases, which is a challenge in comparison with the MVEE problem. We establish the theoretical results of the complexity and the core set size of the rank-two update algorithm for the WEOC problem, which are the generalizations of the currently best-known results for the MEB problem. In addition, by constructing an important inequality for the WEOC problem, we establish the linear convergence of this rank-two update algorithm. Numerical experiments show that the rank-two update algorithm is comparable to the Frank–Wolfe algorithm with away steps for the WEOC problem. In particular, the rank-two update algorithm is more efficient than the Frank–Wolfe algorithm with away steps for problem instances with \(m\gg n\) under high precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. https://i11www.iti.kit.edu/~awolff/map-labeling/general/.

References

  1. Ahipasaoglu, S.D., Sun, P., Todd, M.J.: Linear convergence of a modified Frank–Wolfe algorithm for computing minimum-volume enclosing ellipsoids. Optim. Methods Softw. 23(1), 5–19 (2008)

    Article  MathSciNet  Google Scholar 

  2. Ahipasaoglu, S.D., Yıldırım, E.A.: Identification and elimination of interior points for the minimum enclosing ball problem. SIAM J. Optim. 19(3), 1392–1396 (2008)

    Article  MathSciNet  Google Scholar 

  3. Brimberg, J.: The Fermat–Weber location problem revisited. Math. Program. 71(1), 71–76 (1995)

    Article  MathSciNet  Google Scholar 

  4. Bǎdoiu, M., Clarkson, K.L.: Optimal core-sets for balls. Comput. Geom. Theory Appl. 40(1), 14–22 (2008)

    Article  MathSciNet  Google Scholar 

  5. Berger, A., Grigoriev, A., Winokurow, A.: An efficient algorithm for the single facility location problem with polyhedral norms and disk-shaped demand regions. Comput. Optim. Appl. 68(3), 661–669 (2017)

    Article  MathSciNet  Google Scholar 

  6. Chandrasekaran, R.: The weighted Euclidean 1-center problem. Oper. Res. Lett. 1(3), 111–112 (1982)

    Article  MathSciNet  Google Scholar 

  7. Cong, W.-J., Liu, H.-W., Ye, F., Zhou, S.-S.: Rank-two update algorithms for the minimum volume enclosing ellipsoid problem. Comput. Optim. Appl. 51(1), 241–257 (2012)

    Article  MathSciNet  Google Scholar 

  8. Drezner, Z., Gavish, B.: \(\epsilon \)-approximations for multidimensional weighted location problems. Oper. Res. 33(4), 772–783 (1985)

    Article  MathSciNet  Google Scholar 

  9. Drezner, Z., Wesolowsky, G.O.: Single facility \(l_p\)-distance minimax location. SIAM J. Algebr. Discrete Methods 1(3), 315–321 (1980)

    Article  Google Scholar 

  10. Francis, R.L.: Letter to the editor-some aspects of a minimax location problem. Oper. Res. 15(6), 1163–1169 (1967)

    Article  Google Scholar 

  11. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Naval Res. Logist. Q. 3(1–2), 95–110 (1956)

    Article  MathSciNet  Google Scholar 

  12. Hakimi, S.L.: Optimum locations of switching centers and the absolute centers and medians of a graph. Oper. Res. 12(3), 450–459 (1964)

    Article  Google Scholar 

  13. Hearn, D., Lowe, T.J.: A subgradient procedure for the solution of minimax location problems. Comput. Ind. Eng. 2(1), 17–25 (1978)

    Article  Google Scholar 

  14. Hansen, P., Peeters, D., Richard, D., Thisse, J.F.: The minisum and minimax location problems revisited. Oper. Res. 33(6), 1251–1265 (1985)

    Article  MathSciNet  Google Scholar 

  15. Kuhn, H.W.: On a pair of dual nonlinear programs. In: Abadie, J. (ed.) Nonlinear Programming, pp. 37–54. North-Holland, Amsterdam (1967)

    Google Scholar 

  16. Kumar, P., Yıldırım, E.A.: Minimum-volume enclosing ellipsoids and core sets. J. Optim. Theory Appl. 126(1), 1–21 (2005)

    Article  MathSciNet  Google Scholar 

  17. Kumar, P., Yıldırım, E.A.: An algorithm and a core set result for the weighted Euclidean one-center problem. INFORMS J. Comput. 21(4), 614–629 (2009)

    Article  MathSciNet  Google Scholar 

  18. Megiddo, N.: The weighted Euclidean 1-center problem. Math. Oper. Res. 8(4), 498–504 (1983)

    Article  MathSciNet  Google Scholar 

  19. \(\tilde{\text{N}}\)anculef, R., Frandi, E., Sartori, C., Allende, H.: A novel Frank–Wolfe algorithm. Inf. Sci. 285, 66–99 (2014)

  20. Platt, J.: Fast training of support vector machines using sequential minimal optimization. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Kernel Methods-Support Vector Learning, pp. 185–208. MIT Press, Cambridge (1999)

    Google Scholar 

  21. Pronzato, L.: On the elimination of inessential points in the smallest enclosing ball problem. Optim. Methods Softw. 34(2), 225–247 (2019)

    Article  MathSciNet  Google Scholar 

  22. Robinson, S.M.: Generalized equations and their solutions, part II: applications to nonlinear programming. Math. Program. Study 19, 200–221 (1982)

    Article  Google Scholar 

  23. Sun, P., Freund, R.M.: Computation of minimum-volume covering ellipsoids. Oper. Res. 52(5), 690–706 (2004)

    Article  MathSciNet  Google Scholar 

  24. Todd, M.J., Yıldırım, E.A.: On Khachiyan’s algorithm for the computation of minimum-volume enclosing ellipsoids. Discrete Appl. Math. 155(13), 1731–1744 (2007)

    Article  MathSciNet  Google Scholar 

  25. Wolfe, P.: Convergence theory in nonlinear programming. In: Abadie, J. (ed.) Integer and Nonlinear Programming, pp. 1–36. North-Holland, Amsterdam (1970)

    Google Scholar 

  26. Wagner, F., Wolff, A.: A combinatorial framework for map labeling. In: International Symposium on Graph Drawing. LNCS, vol. 1547, pp. 316–331. Springer, Berlin (1998)

  27. Yıldırım, E.A.: Two algorithms for the minimum enclosing ball problem. SIAM J. Optim. 19(3), 1368–1391 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors sincerely appreciate the two anonymous referees for their careful reading and the fruitful comments which led to the improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-jie Cong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by the National Natural Science Foundation of China (Grant No. 11701446) and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2018JM1054).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cong, Wj., Wang, L. & Sun, H. Rank-two update algorithm versus Frank–Wolfe algorithm with away steps for the weighted Euclidean one-center problem. Comput Optim Appl 75, 237–262 (2020). https://doi.org/10.1007/s10589-019-00148-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-019-00148-z

Keywords

Navigation