Skip to main content

Advertisement

Log in

Linearization of Euclidean norm dependent inequalities applied to multibeam satellites design

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Euclidean norm computations over continuous variables appear naturally in the constraints or in the objective of many problems in the optimization literature, possibly defining non-convex feasible regions or cost functions. When some other variables have discrete domains, it positions the problem in the challenging Mixed Integer Nonlinear Programming (MINLP) class. For any MINLP where the nonlinearity is only present in the form of inequality constraints involving the Euclidean norm, we propose in this article an efficient methodology for linearizing the optimization problem at the cost of entirely controllable approximations even for non convex constraints. They make it possible to rely fully on Mixed Integer Linear Programming and all its strengths. We first empirically compare this linearization approach with a previously proposed linearization approach of the literature on the continuous k-center problem. This methodology is then successfully applied to a critical problem in the telecommunication satellite industry: the optimization of the beam layouts in multibeam satellite systems. We provide a proof of the NP-hardness of this very problem along with experiments on a realistic reference scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D’Ambrosio, C., ans Liberti, L.: Distance geometry in linearizable norms. In: Geometric Science of Information, pp. 830–837. Springer International Publishing (2017)

  2. Ben-Tal, A., Nemirovski, A.: On polyhedral approximations of the second-order cone. Math. Oper. Res. 26(2), 193–205 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Biswas, P., Ye, Y.: Semidefinite programming for ad hoc wireless sensor network localization. In: Third International Symposium on Information Processing in Sensor Networks, pp. 46–54 (2004)

  4. Bousquet, M., Maral, G.: Satellite Communications Systems: Systems Techniques and Technology, 5th edn. Wiley, Chichester (2009)

    Google Scholar 

  5. Camino, J.-T., Artigues, C., Houssin, L., Mourgues, S.: A greedy approach combined with graph coloring for non-uniform beam layouts under antenna constraints in multibeam satellite systems. In: Advanced Satellite Multimedia Systems Conference and the 13th Signal Processing for Space Communications Workshop (ASMS/SPSC) (2014)

  6. Camino, J.-T., Artigues, C., Houssin, L., Mourgues, S.: Mixed-integer linear programming for multibeam satellite systems design: Application to the beam layout optimization. In: 2016 Annual IEEE Systems Conference (SysCon) (2016)

  7. Celebi, M., Celiker, F., Kingravi, H.: On Euclidean norm approximations. Pattern Recognition p. 278283 (2011)

  8. Cook, J.M.: Rational formulae for the production of a spherically symmetric probability distribution. Math. Comput. 11(58), 81–82 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  9. Erber, T., Hockney, G.M.: Equilibrium configurations of n equal charges on a sphere. J. Phys. A Math. Gen. 24(23), L1369 (1991)

    Article  Google Scholar 

  10. Fayed, H.A., Atiya, A.F.: A mixed breadth-depth first strategy for the branch and bound tree of Euclidean k-center problems. Comput. Optim. Appl. 54(3), 675–703 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gentile, C.: Sensor location through linear programming with triangle inequality constraints. In: IEEE Conf. on Communications, pp. 3192–3196 (2005)

  12. Glineur, F., De Houdain, R., Mons, B.: Computational experiments with a linear approximation of second-order cone optimization. Image Technical Report 0001, Mons (2000)

  13. Harman, R., Lacko, V.: On decompositional algorithms for uniform sampling from n-spheres and n-balls. J. Multivar. Anal. 101(10), 2297–2304 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kiatmanaroj, K., Artigues, C., Houssin, L., Messine, F.: Frequency assignment in a SDMA satellite communication system with beam decentring feature. Comput. Optim. Appl. 56, 439–455 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications. SIAM Rev. 56(1), 3–69 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liberti, L., Maculan, N., Zhang, Y.: Optimal configuration of gamma ray machine radiosurgery units: the sphere covering subproblem. Optim. Lett. 3(1), 109–121 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mao, G., Fidan, B., Anderson, B.D.O.: Wireless sensor network localization techniques. Elsevier/ACM Computer Networks, pp. 2529–2553 (2007)

  18. Megiddo, N., Supowit, K.J.: On the complexity of some common geometric location problems. Society for Industrial and Applied Mathematics—SIAM J. Comput. 13(1):182–196 (1984)

  19. Mukherjee, J.: Linear combination of norms in improving approximation of Euclidean norm. Pattern Recognit. Lett. 34, 1348–1355 (2013)

    Article  Google Scholar 

  20. Muller, M.E.: A note on a method for generating points uniformly on n-dimensional spheres. Commun. ACM 2(4), 19–20 (1959)

    Article  MATH  Google Scholar 

  21. Peake, M.J., Trevelyan, J., Coates, G.: The equal spacing of n points on a sphere with application to partition-of-unity wave diffraction problems. Eng. Anal. Bound. Elem. 40, 114–122 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rabie, H.M., El-Khodary, I.A., Tharwat, A.A.: A particle swarm optimization algorithm for the continuous absolute p-center location problem with Euclidean distance. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 4, 101–106 (2013)

    Google Scholar 

  23. Riedl, W.F., Znnchen, B.: The k-center problem. https://www-m9.ma.tum.de/games/kcenter-game/. Last consulted on January 4 (2019)

  24. Saff, E.B., Kuijlaars, A.B.J.: Distributing many points on a sphere. Math. Intell. 19(1), 5–11 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sutou, A., Dai, Y.: Global optimization approach to unequal sphere packing problems in 3d. J. Optim. Theory Appl. 114, 671–694 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xue, G., Rosen, J.B., Pardalos, P.M.: A polynomial time dual algorithm for the Euclidean multifacility location problem. In: Proceedings of Second Conference on Integer Programming and Combinatorial Optimization, pp. 227–236 (1992)

  27. Xue, G., Yue, Y.: An efficient algorithm for minimizing a sum of Euclidean norms with applications. SIAM J. Optim. 7, 10171036 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Houssin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camino, JT., Artigues, C., Houssin, L. et al. Linearization of Euclidean norm dependent inequalities applied to multibeam satellites design. Comput Optim Appl 73, 679–705 (2019). https://doi.org/10.1007/s10589-019-00083-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-019-00083-z

Keywords

Navigation