Skip to main content
Log in

Tikhonov regularization of control-constrained optimal control problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We consider Tikhonov regularization of control-constrained optimal control problems. We present new a-priori estimates for the regularization error assuming measure and source-measure conditions. In the special case of bang–bang solutions, we introduce another assumption to obtain the same convergence rates. This new condition turns out to be useful in the derivation of error estimates for the discretized problem. The necessity of the just mentioned assumptions to obtain certain convergence rates is analyzed. Finally, a numerical example confirms the analytical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alt, W., et al.: Error bounds for Euler approximation of linear–quadratic control problems with bang–bang solutions. NACO 2(3), 547–570 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alt, W., Seydenschwanz, M.: Regularization and discretization of linear–quadratic control problems. Control Cybern. 40(4), 903–920 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  4. Deckelnick, K., Hinze, M.: A note on the approximation of elliptic control problems with bang–bang controls. Comput. Optim. Appl. 51, 931–939 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer Academic Publishers, Dordrecht (2000)

    MATH  Google Scholar 

  6. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976)

    MATH  Google Scholar 

  7. Evans, L.C.: Partial Differential Equations. AMS, Providence (1998)

    MATH  Google Scholar 

  8. Felgenhauer, U.: On stability of bang–bang type controls. SIAM J. Control Optim. 41(6), 1843–1867 (2003). https://doi.org/10.1137/S0363012901399271

    Article  MathSciNet  MATH  Google Scholar 

  9. Gong, W., Yan, N.: Robust error estimates for the finite element approximation of elliptic optimal control problems. J. Comput. Appl. Math. 236(6), 1370–1381 (2011). https://doi.org/10.1016/j.cam.2011.09.001

    Article  MathSciNet  MATH  Google Scholar 

  10. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Springer, Berlin (2009)

    MATH  Google Scholar 

  11. Hinze, M.: A variational discretization concept in control constrained optimization: the linear–quadratic case. Comput. Optim. Appl. 30(1), 45–61 (2005). https://doi.org/10.1007/s10589-005-4559-5

    Article  MathSciNet  MATH  Google Scholar 

  12. Neubauer, A.: Tikhonov-regularization of ill-posed linear operator equations on closed convex sets. Dissertation, Johannes Kepler-Universität Linz (1986)

  13. Seydenschwanz, M.: Convergence results for the discrete regularization of linear–quadratic control problems with bang–bang solutions. Comput. Optim. Appl. 61(3), 731–760 (2015). https://doi.org/10.1007/s10589-015-9730-z

    Article  MathSciNet  MATH  Google Scholar 

  14. Tröltzsch, F.: Optimale Steuerung mit Partiellen Differentialgleichungen. Vieweg, Braunschweig (2005)

    Book  MATH  Google Scholar 

  15. von Daniels, N.: Bang–bang control of parabolic equations. Dissertation, Univ. Hamburg (2016). http://ediss.sub.uni-hamburg.de/volltexte/2017/8427/

  16. von Daniels, N., Hinze, M.: Variational discretization of a control-constrained parabolic bang–bang optimal control problem. Preprint. arXiv:1707.01454

  17. von Daniels, N., Hinze, M., Vierling, M.: Crank–Nicolson time stepping and variational discretization of control-constrained parabolic optimal control problems. SIAM J. Control Optim. 53(3), 1182–1198 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wachsmuth, D.: Adaptive regularization and discretization of bang–bang optimal control problems. ETNA 40, 249–267 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Wachsmuth, D.: Robust error estimates for regularization and discretization of bang–bang control problems. Comput. Optim. Appl. 62, 271–289 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wachsmuth, D., Wachsmuth, G.: Convergence and regularization results for optimal control problems with sparsity functional. ESAIM Control Optim. Calc. Var. 17(3), 858–886 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wachsmuth, D., Wachsmuth, G.: Regularization error estimates and discrepancy principle for optimal control problems with inequality constraints. Control Cybern. 40(4), 1125–1158 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Wachsmuth, D., Wachsmuth, G.: Necessary conditions for convergence rates of regularizations of optimal control problems. In: Hömberg, D., Tröltzsch, F. (eds) System Modeling and Optimization. CSMO 2011. IFIP Advances in Information and Communication Technology, vol. 391. Springer, Berlin (2013)

  23. Ziemer, W.P.: Weakly Differentiable Functions. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaus von Daniels.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Daniels, N. Tikhonov regularization of control-constrained optimal control problems. Comput Optim Appl 70, 295–320 (2018). https://doi.org/10.1007/s10589-017-9976-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-017-9976-8

Keywords

Navigation