Skip to main content
Log in

On the convergence of alternating minimization methods in variational PGD

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

The approximation of solutions to partial differential equations by tensorial separated representations is one of the most efficient numerical treatment of high dimensional problems. The key step of such methods is the computation of an optimal low-rank tensor to enrich the obtained iterative tensorial approximation. In variational problems, this step can be carried out by alternating minimization (AM) technics, but the convergence of such methods presents a real challenge. In the present work, the convergence of rank-one AM algorithms for a class of variational linear elliptic equations is studied. More precisely, we show that rank-one AM-sequences are in general bounded in the ambient Hilbert tensor space and are compact if a uniform non-orthogonality condition between iterates and the reaction term is fulfilled. In particular, if a rank-one AM-sequence is weakly convergent then it converges strongly and the common limit is a solution of the rank-one optimization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ammar, A., Chinesta, F., Falcó, A.: On the convergence of a greedy rank-one update algorithm for a class of linear systems. Arch. Comput. Methods Eng. 17(4), 473–486 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ammar, A., Mokdad, B., Chinesta, F., Keunings, R.: A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fuids. J. Non Newton. Fluid Mech. 139(3), 153–176 (2006)

    Article  MATH  Google Scholar 

  3. Le Bris, C., Lelievre, T., Maday, Y.: Results and questions on a nonlinear approximation approach for solving high-dimensional partial differential equations. Constr. Approx. 30(3), 621–651 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cances, E., Ehrlacher, V., Lelièvre, T.: Greedy algorithms for high-dimensional non-symmetric linear problems. ESAIM Proc. 41(12), 95–131 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chinesta, F., Cueto, E.: PGD-Based Modeling of Materials. Structuresand Processes. Springer, Berlin (2014)

    Google Scholar 

  6. Chinesta, F., Keunings, R., Leygue, A.: The Proper Generalized Decomposition for Advanced Numerical Simulations: A Primer. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  7. Denis de Senneville, B., El Hamidi, A., Moonen, C.: A direct pca-based approach for real-time description of physiological organ deformations. Trans. Med. Imaging 34(4), 974–982 (2015)

    Article  Google Scholar 

  8. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1(3), 211–218 (1936)

    Article  MATH  Google Scholar 

  9. Espig, M., Hackbusch, W., Khachatryan, A.: On the convergence of alternating least squares optimisation in tensor format representations. Preprint-No 423 of Institut für Geometrie und Praktische Mathematik, submitted (2015)

  10. Falcó, A., Hackbusch, W., Nouy, A.: On the dirac-frenkel variational principle on tensor banach spaces. arXiv:1610.09865v1 (submitted) (2015)

  11. Falcó, A., Nouy, A.: A proper generalized decomposition for the solution of elliptic problems in abstract form by using a functional eckart-young approach. J. Math. Anal. Appl. 376(15), 469–480 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Falcó, A., Nouy, A.: Proper generalized decomposition for nonlinear convex problems in tensor banach spaces. Numerische Mathematik 121(3), 503–530 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Figueroa, L.-E., Suli, E.: Greedy approximation of high-dimensional ornstein-uhlenbeck operators. Found. Comput. Math. 12(5), 573–623 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  15. Ladevèze, P.: Nonlinear computational structural mechanics: New approaches and non-incremental methods of calculation. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  16. Nouy, A.: A priori model reduction through proper generalized decomposition for solving time-dependent partial differential equations. Comput. Methods Appl. Mech. Eng. 199(23–24), 1603–1626 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schmidt, E.: Zur theorie der linearen und nichtlinearen integralgleichungen. i. teil: Entwicklung willkürlicher funktionen nach systemen vorgeschriebener. Math. Annalen 63(2), 433–476 (1907)

    Article  MATH  Google Scholar 

  18. De Silva, V., Lim, L.-H.: Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J. Matrix Anal. Appl. 30(3), 1084–1127 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Troltzsch, F., Volkwein, S.: Pod a-posteriori error estimates for linear-quadratic optimal control problems. Comput. Optim. Appl. 44(1), 83–115 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Uschmajew, A.: Local convergence of the alternating least squares algorithm for canonical tensor approximation. SIAM J. Matrix Anal. Appl. 33(2), 639–652 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhang, T., Golub, G.H.: Rank-one approximation to high order tensors. SIAM J. Matrix Anal. Appl. 23(2), 534–550 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of A. El Hamidi was supported in part by the GDRI—CNRS FSI (Fluid Structure Interaction). The authors are very grateful to the anonymous referee for his interesting remarks and suggestions that improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. El Hamidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Hamidi, A., Ossman, H. & Jazar, M. On the convergence of alternating minimization methods in variational PGD. Comput Optim Appl 68, 455–472 (2017). https://doi.org/10.1007/s10589-017-9920-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-017-9920-y

Keywords

Mathematics Subject Classification

Navigation