Skip to main content
Log in

Local and global convergence of a general inertial proximal splitting scheme for minimizing composite functions

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

This paper is concerned with convex composite minimization problems in a Hilbert space. In these problems, the objective is the sum of two closed, proper, and convex functions where one is smooth and the other admits a computationally inexpensive proximal operator. We analyze a family of generalized inertial proximal splitting algorithms (GIPSA) for solving such problems. We establish weak convergence of the generated sequence when the minimum is attained. Our analysis unifies and extends several previous results. We then focus on \(\ell _1\)-regularized optimization, which is the ubiquitous special case where the nonsmooth term is the \(\ell _1\)-norm. For certain parameter choices, GIPSA is amenable to a local analysis for this problem. For these choices we show that GIPSA achieves finite “active manifold identification”, i.e. convergence in a finite number of iterations to the optimal support and sign, after which GIPSA reduces to minimizing a local smooth function. We prove local linear convergence under either restricted strong convexity or a strict complementarity condition. We determine the rate in terms of the inertia, stepsize, and local curvature. Our local analysis is applicable to certain recent variants of the Fast Iterative Shrinkage–Thresholding Algorithm (FISTA), for which we establish active manifold identification and local linear convergence. Based on our analysis we propose a momentum restart scheme in these FISTA variants to obtain the optimal local linear convergence rate while maintaining desirable global properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. In fact we expect the objective function values of I-FBS to reach the minimum with speed o(1 / k) if the parameters satisfy the conditions of Theorem 1. However this analysis is beyond the scope of this paper.

  2. Setting \(A=\partial g\) and \(B=\nabla f\) recovers Problem (1).

  3. Among first-order methods.

  4. \(F^*\) is approximated by the smallest objective function value among all tested algorithms after 1500 iterations.

  5. Despite having an additional function evaluation per iteration, FISTA-CD-RE only requires one matrix multiply per iteration, which is the same as FISTA-CD and FISTA since the matrix multiply is the dominant cost.

References

  1. Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.: Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Image Process. 19(9), 2345–2356 (2010)

    Article  MathSciNet  Google Scholar 

  2. Agarwal, A., Negahban, S., Wainwright, M.J.: Fast global convergence of gradient methods for high-dimensional statistical recovery. Ann. Statist. 40(5), 2452–2482 (2012). doi:10.1214/12-AOS1032

    Article  MathSciNet  MATH  Google Scholar 

  3. Alvarez, F.: On the minimizing property of a second order dissipative system in Hilbert spaces. SIAM J. Control Optim. 38(4), 1102–1119 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Attouch, H., Chbani, Z., Peypouquet, J., Redont, P.: Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity. Math. Program. 1–53 (2016). doi:10.1007/s10107-016-0992-8.

  5. Attouch, H., Peypouquet, J.: The rate of convergence of Nesterov’s accelerated forward-backward method is actually faster than \(1/k^{2}\). SIAM J. Optim. 26(3), 1824–1834 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Attouch, H., Peypouquet, J., Redont, P.: A dynamical approach to an inertial forward-backward algorithm for convex minimization. SIAM J. Optim. 24(1), 232–256 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bach, F., Jenatton, R., Mairal, J., Obozinski, G., et al.: Convex optimization with sparsity-inducing norms. Optim. Mach. Learn. 5, 19–53 (2011)

    MATH  Google Scholar 

  8. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  9. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Img. Sci. 2(1), 183–202 (2009). doi:10.1137/080716542

    Article  MathSciNet  MATH  Google Scholar 

  10. Bello Cruz, J.Y., Nghia, T.T.: On the convergence of the forward–backward splitting method with linesearches. Optim. Methods Software 31(6), 1209–1238 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bertsekas, D.P.: Nonlinear programming, 2nd edn. Athena Scientific (1999)

  12. Boţ, R.I., Csetnek, E.R., Hendrich, C.: Inertial Douglas–Rachford splitting for monotone inclusion problems. Appl. Math. Comput. 256, 472–487 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Bredies, K., Lorenz, D.A.: Linear convergence of iterative soft-thresholding. J. Fourier Anal. Appl. 14(5–6), 813–837 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Burachik, R.S., Svaiter, B.: \(\varepsilon \)-enlargements of maximal monotone operators in banach spaces. Set-Valued Anal. 7(2), 117–132 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cevher, V., Becker, S., Schmidt, M.: Convex optimization for big data: Scalable, randomized, and parallel algorithms for big data analytics. Signal Process. Mag. IEEE 31(5), 32–43 (2014)

    Article  Google Scholar 

  16. Chambolle, A., Dossal, C.: On the convergence of the iterates of the fast iterative shrinkage/thresholding algorithm. J. Optim. Theory Appl. 166(3), 968–982 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chambolle, A., Pock, T.: On the ergodic convergence rates of a first-order primal-dual algorithm. Math. Program. 159(1–2), 253–287 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Choi, K., Wang, J., Zhu, L., Suh, T.S., Boyd, S., Xing, L.: Compressed sensing based cone-beam computed tomography reconstruction with a first-order method. Med. phys 37(9), 5113–5125 (2010)

    Article  Google Scholar 

  19. Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 185–212. Springer, New York (2011)

    Chapter  Google Scholar 

  20. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Condat, L.: A primal–dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms. J. Optim. Theory Appl. 158(2), 460–479 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Davis, D., Yin, W.: Convergence Rate Analysis of Several Splitting Schemes. Tech. rep, UCLA CAM Report (2014)

    Google Scholar 

  23. Eckstein, J., Yao, W.: Augmented Lagrangian and alternating direction methods for convex optimization: A tutorial and some illustrative computational results. RUTCOR Research Reports 32 (2012)

  24. Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Software 33(1), 1 (2010)

    Article  Google Scholar 

  25. Güler, O.: New proximal point algorithms for convex minimization. SIAM J. Optim. 2(4), 649–664 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hale, E.T., Yin, W., Zhang, Y.: Fixed-point continuation for \(\ell _1\)-minimization: methodology and convergence. SIAM J. Optim. 19(3), 1107–1130 (2008). doi:10.1137/070698920

    Article  MathSciNet  MATH  Google Scholar 

  27. Hare, W., Lewis, A.S.: Identifying active constraints via partial smoothness and prox-regularity. J Convex Anal. 11(2), 251–266 (2004)

    MathSciNet  MATH  Google Scholar 

  28. Kim, S.J., Koh, K., Lustig, M., Boyd, S., Gorinevsky, D.: An interior-point method for large-scale \(\ell _1\)-regularized least squares. IEEE J. Sel. Top. Signal Process. 1(4), 606–617 (2007)

    Article  Google Scholar 

  29. Liang, J., Fadili, J., Peyré, G.: Convergence rates with inexact non-expansive operators. Math. Program. 159(1–2), 403–434 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liang, J., Fadili, J., Peyré, G.: Local linear convergence of forward–backward under partial smoothness. In: Advances in Neural Information Processing Systems, pp. 1970–1978 (2014)

  31. Liang, J., Fadili, J., Peyré, G.: Activity identification and local linear convergence of inertial forward–backward splitting. arXiv preprint arXiv:1503.03703 (2015)

  32. Lorenz, D.A., Pock, T.: An inertial forward-backward algorithm for monotone inclusions. J. Math. Imaging Vis. (2014). doi:10.1007/s10851-014-0523-2

    MATH  Google Scholar 

  33. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  34. Maingé, P.E.: Convergence theorems for inertial KM-type algorithms. J. Comput. Appl. Math. 219(1), 223–236 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Monteiro, R.D., Ortiz, C., Svaiter, B.F.: An adaptive accelerated first-order method for convex optimization. Comput. Optim. Appl. 64(1), 31–73 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Moudafi, A., Oliny, M.: Convergence of a splitting inertial proximal method for monotone operators. J. Comput. Appl. Math. 155(2), 447–454 (2003). doi:10.1016/S0377-0427(02)00906-8

    Article  MathSciNet  MATH  Google Scholar 

  37. Nesterov, Y.: A method of solving a convex programming problem with convergence rate \(O(1/k^2)\). Soviet Math. Dokl. 27, 372–376 (1983)

    MATH  Google Scholar 

  38. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  39. Nesterov, Y.: Gradient methods for minimizing composite functions. Math. Program. 140(1), 125–161 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. O’Donoghue, B., Candès, E.: Adaptive restart for accelerated gradient schemes. Found. Comput. Math. 15(3), 715–732 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc 73(4), 591–597 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  42. Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72(2), 383–390 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  43. Polyak, B.T.: Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys. 4(5), 1–17 (1964)

    Article  Google Scholar 

  44. Polyak, B.T.: Introduction to Optimization. Optimization Software Inc. New York (1987)

  45. Raguet, H., Fadili, J., Peyré, G.: A generalized forward-backward splitting. SIAM J. Imaging Sci. 6(3), 1199–1226 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Shalev-Shwartz, S., Tewari, A.: Stochastic methods for \(\ell _1\)-regularized loss minimization. J. Mach. Learn. Res. 12, 1865–1892 (2011)

    MathSciNet  MATH  Google Scholar 

  47. Su, W., Boyd, S., Candès, E.: A differential equation for modeling Nesterov’s accelerated gradient method: theory and insights. In: Advances in Neural Information Processing Systems, pp. 2510–2518 (2014)

  48. Tao, S., Boley, D., Zhang, S.: Local linear convergence of ista and fista on the lasso problem. SIAM J. Optim. 26(1), 313–336 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tibshirani, R.J.: The lasso problem and uniqueness. Electron. J. Stat. 7, 1456–1490 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. Tseng, P.: On accelerated proximal gradient methods for convex–concave optimization. SIAM J. Opt. (2008, submitted)

  51. Wen, Z., Yin, W., Zhang, H., Goldfarb, D.: On the convergence of an active-set method for \(\ell _1\) minimization. Optim. Methods Softw. 27(6), 1127–1146 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhang, H., Yin, W., Cheng, L.: Necessary and sufficient conditions of solution uniqueness in 1-norm minimization. J. Optim. Theory Appl. 164(1), 109–122 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick R. Johnstone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnstone, P.R., Moulin, P. Local and global convergence of a general inertial proximal splitting scheme for minimizing composite functions. Comput Optim Appl 67, 259–292 (2017). https://doi.org/10.1007/s10589-017-9896-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-017-9896-7

Keywords

Navigation