Skip to main content

Advertisement

Log in

Pressurized intraperitoneal aerosol chemotherapy and its effect on gastric-cancer-derived peritoneal metastases: an overview

  • Review
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

This manuscript aspires to portray a review of the current literature focusing on manifest peritoneal metastasis (PM) derived from gastric cancer and its treatment options. Despite the development of chemotherapy and multimodal treatment options during the last decades, mortality remains high worldwide. After refreshing important epidemiological considerations, the molecular mechanisms currently accepted through which PM occurs are revised. Palliative chemotherapy is the only recommended treatment option for patients with PM of gastric cancer according to the National Comprehensive Cancer Network guidelines, although cytoreductive surgery in combination with hyperthermic intraperitoneal chemotherapy demonstrated promising results in selected patients with regional PM and localized intraabdominal tumor spread. A novel treatment named pressurized intraperitoneal aerosol chemotherapy may have a promising future in improving overall survival with an acceptable postoperative complication rate and stabilizing quality of life during treatment. Additionally, the procedure has been proved to be safe for the patient and medical personnel and a feasible, repeatable method to deter metastatic proliferation. This overview comprehensively addresses this novel and promising treatment in the context of a scientifically and clinically challenging disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ANXA1:

Anti-inflammatory protein Annexin 1

CAFs:

Cancer associated fibroblasts

CAWS:

Closed aerosol waste system

CCR:

Transmembrane G protein-coupled chemokine receptors

CDH1:

Calcium-dependent cell–cell adhesion molecule E-cadherin

CRS:

Cytoreductive surgery

CTGF:

Connective tissue growth factor

CXC/CC:

Chemokines

ECM:

Extracellular matrix

EMT:

Epithelial-mesenchymal transition

HIF-1α:

Hypoxia-inducible factor-1α

HIPEC:

Hyperthermic intraperitoneal chemotherapy

miRNA:

MicroRNAs

MMP:

Matrix metalloproteinase

MS:

Milky spots

MVD:

Microvascular density

NCCN:

National comprehensive cancer network

NIPS:

Neoadjuvant intraperitoneal-systemic chemotherapy protocol

NRAGE:

Neutrophin receptor-interacting melanoma antigen-encoding gene homolog

PCI:

Peritoneal cancer index

PIPAC:

Pressurized intraperitoneal aerosol chemotherapy

PM:

Peritoneal metastasis

PTEN:

Phosphatase and tensin homolog

S-1:

Tegafur, 5-chloro-2-4-dihydroxypyridine and oxonic acid

TAMs:

Tumor associated macrophages

VEGF:

Vascular endothelial growth factor

α-SMA:

Alpha-smooth muscle actin

References

  1. Thomassen I, Van Gestel YR, Van Ramshorst B et al (2013) Peritoneal carcinomatosis of gastric origin: a population-based study on incidence, survival and risk factors. Int J Cancer 134:622–628. https://doi.org/10.1002/ijc.28373

    Article  CAS  PubMed  Google Scholar 

  2. Yang D, Hendifar A, Lenz C et al (2011) Survival of metastatic gastric cancer: significance of age, sex and race/ethnicity. J Gastrointest Oncol 2:77–84. https://doi.org/10.3978/j.issn.2078-6891.2010.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. van Baal JOAM, Van de Vijver KK, Nieuwland R et al (2017) The histophysiology and pathophysiology of the peritoneum. Tissue Cell 49:95–105. https://doi.org/10.1016/j.tice.2016.11.004

    Article  PubMed  Google Scholar 

  4. American Cancer Society (2015) Global cancer facts & figs, 3rd edn. American Cancer Society, Atlanta

    Google Scholar 

  5. Balakrishnan M, George R, Sharma A, Graham DY (2017) Changing trends in stomach cancer throughout the world. Curr Gastroenterol Rep 19:36. https://doi.org/10.1007/s11894-017-0575-8

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lu M, Yang Z, Feng Q et al (2016) The characteristics and prognostic value of signet ring cell histology in gastric cancer: a retrospective cohort study of 2199 consecutive patients. Medicine 95(27):e4052. https://doi.org/10.1097/MD.0000000000004052

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sugarbaker PH (2018) Gastric cancer: prevention and treatment of peritoneal metastases. J Cancer Metastasis Treat 4:7. https://doi.org/10.20517/2394-4722.2017.67

    Article  CAS  Google Scholar 

  8. Sugarbaker PH, Yonemura Y (2000) Clinical pathway for the management of resectable gastric cancer with peritoneal seeding: best palliation with a ray of hope for cure. Oncology 58(2):96–107

    Article  CAS  PubMed  Google Scholar 

  9. Gretschel S, Siegel R, Estévez-Schwarz L et al (2006) Surgical strategies for gastric cancer with synchronous peritoneal carcinomatosis. Br J Surg 93:1530–1535. https://doi.org/10.1002/bjs.5513

    Article  CAS  PubMed  Google Scholar 

  10. Valastyan S, Weinberg RA (2011) Review tumor metastasis: molecular insights and evolving paradigms. Cell 147:275–292. https://doi.org/10.1016/j.cell.2011.09.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pachmayr E, Treese C, Stein U (2017) Underlying mechanisms for distant metastasis-molecular biology. Visc Med 33(1):11–20. https://doi.org/10.1159/000454696

    Article  PubMed  PubMed Central  Google Scholar 

  12. Takeichi M (1993) Cadherins in cancer: implications for invasion and metastasis. Curr Opin Cell Biol 5:806–811. https://doi.org/10.1016/0955-0674(93)90029-P

    Article  CAS  PubMed  Google Scholar 

  13. Peng Z, Wang C, Fang E et al (2014) Role of epithelial-mesenchymal transition in gastric cancer initiation and progression. World J Gastroenterol 20:5403–5410. https://doi.org/10.3748/wjg.v20.i18.5403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chang M-C, Jeng J-H (2011) Tumor Cell-Induced Platelet Aggregation. In: Schwab M (ed) Encyclopedia of cancer. Springer, Berlin, p 3793–3795

    Chapter  Google Scholar 

  15. Yutaka Y, Yoshio E, Tohru O, Takuma S (2006) Recent advances in the treatment of peritoneal dissemination of gastrointestinal cancers by nucleoside antimetabolites. Cancer Sci 98:11–18. https://doi.org/10.1111/j.1349-7006.2006.00350.x

    Article  CAS  Google Scholar 

  16. Kanda M, Kodera Y (2016) Molecular mechanisms of peritoneal dissemination in gastric cancer. 22:6829–6840. https://doi.org/10.3748/wjg.v22.i30.6829

  17. Cheng T, Wu M, Lin J, Lin M (2012) Annexin A1 is associated with gastric cancer survival and promotes gastric cancer cell invasiveness through the formyl peptide receptor/extracellular signal-regulated kinase/integrin beta-1-binding protein 1 pathway. Cancer 118(23):5757–5767. https://doi.org/10.1002/cncr.27565

    Article  CAS  PubMed  Google Scholar 

  18. Singh J, Sharma A, Ahuja N (2017) Genomics of peritoneal surface malignancies. J Perit. https://doi.org/10.4081/joper.2017.62

    Article  Google Scholar 

  19. Liu J, Geng X, Li Y (2016) Milky spots: omental functional units and hotbeds for peritoneal cancer metastasis. Tumor Biol 5715–5726. https://doi.org/10.1007/s13277-016-4887-3

  20. Liebermann-Meffert D, White H, Vaubel E (1983) The greater OMENTUM. Springer, Berlin

    Book  Google Scholar 

  21. Miao ZF, Wang ZN, Zhao TT et al (2014) Peritoneal milky spots serve as a hypoxic niche and favor gastric cancer stem/progenitor cell peritoneal dissemination through hypoxia-inducible factor 1α. Stem Cells 32:3062–3074. https://doi.org/10.1002/stem.1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–1437. https://doi.org/10.1038/nm.3394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yan Y, Wang L-F, Wang R-F (2015) Role of cancer-associated fibroblasts in invasion and metastasis of gastric cancer. World J Gastroenterol 21:9717. https://doi.org/10.3748/wjg.v21.i33.9717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mura G, Verdelli B (2016) The features of peritoneal metastases from gastric cancer. J Cancer Metastasis Treat 2:365. https://doi.org/10.20517/2394-4722.2016.19

    Article  CAS  Google Scholar 

  25. Cao L, Hu X, Zhang J et al (2014) The role of the CCL22-CCR4 axis in the metastasis of gastric cancer cells into omental milky spots. J Transl Med 12:267. https://doi.org/10.1186/s12967-014-0267-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen G, Chen SM, Wang X et al (2012) Inhibition of chemokine (CXC motif) ligand 12/chemokine (CXC motif) receptor 4 axis (CXCL12/CXCR4)-mediated cell migration by targeting mammalian target of rapamycin (mTOR) pathway in human gastric carcinoma cells. J Biol Chem 287:12132–12141. https://doi.org/10.1074/jbc.M111.302299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang LL, Liu J, Lei S et al (2014) PTEN inhibits the invasion and metastasis of gastric cancer via downregulation of FAK expression. Cell Signal 26:1011–1020. https://doi.org/10.1016/j.cellsig.2014.01.025

    Article  CAS  PubMed  Google Scholar 

  28. Takatsuki H, Komatsu S, Sano R et al (2004) Adhesion of gastric carcinoma cells to peritoneum mediated by α3β1 integrin (VLA-3). Cancer Res 64:6065–6070. https://doi.org/10.1158/0008-5472.CAN-04-0321

    Article  CAS  PubMed  Google Scholar 

  29. Nishimori H, Yasoshima T, Denno R et al (2000) A novel experimental mouse model of peritoneal dissemination of human gastric cancer cells: different mechanisms in peritoneal dissemination and hematogenous metastasis. Jpn J Cancer Res 91:715–722. https://doi.org/10.1111/j.1349-7006.2000.tb01004.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yonemura Y, Endou Y, Fujita H et al (2000) Role of MMP-7 in the formation of peritoneal dissemination in gastric cancer. Gastric Cancer 3:63–70

    Article  PubMed  Google Scholar 

  31. Chen C-N, Chang C-C, Lai H-S et al (2015) Connective tissue growth factor inhibits gastric cancer peritoneal metastasis by blocking integrin α3β1-dependent adhesion. Gastric Cancer 18:504–515. https://doi.org/10.1007/s10120-014-0400-0

    Article  CAS  PubMed  Google Scholar 

  32. Saito Y, Sekine W, Sano R et al (2010) Potentiation of cell invasion and matrix metalloproteinase production by alpha3beta1 integrin-mediated adhesion of gastric carcinoma cells to laminin-5. Clin Exp Metastasis 27:197–205. https://doi.org/10.1007/s10585-010-9314-3

    Article  CAS  PubMed  Google Scholar 

  33. Li S-G, Ye Z-Y, Zhao Z-S et al (2008) Correlation of integrin β3 mRNA and vascular endothelial growth factor protein expression profiles with the clinicopathological features and prognosis of gastric carcinoma. World J Gastroenterol 14:421. https://doi.org/10.3748/wjg.14.421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Carmignani CP, Sugarbaker TA, Bromley CM, Sugarbaker PH (2003) Intraperitoneal cancer dissemination: Mechanisms of the patterns of spread. Cancer Metastasis Rev 22:465–472. https://doi.org/10.1023/A:1023791229361

    Article  PubMed  Google Scholar 

  35. Takebayashi K, Murata S, Yamamoto H et al (2014) Surgery-induced peritoneal cancer cells in patients who have undergone curative gastrectomy for gastric cancer. Ann Surg Oncol 21:1991–1997. https://doi.org/10.1245/s10434-014-3525-9

    Article  PubMed  Google Scholar 

  36. Yang S, Feng R, Pan ZC et al (2015) A comparison of intravenous plus intraperitoneal chemotherapy with intravenous chemotherapy alone for the treatment of gastric cancer: a meta-analysis. Sci Rep 5:1–12. https://doi.org/10.1038/srep12538

    Article  CAS  Google Scholar 

  37. Ishigami H, Fujiwara Y, Fukushima R et al (2018) Phase III trial comparing intraperitoneal and intravenous paclitaxel plus S-1 versus cisplatin plus S-1 in patients with gastric cancer with peritoneal metastasis: PHOENIX-GC trial. J Clin Oncol 36:1922–1929. https://doi.org/10.1200/JCO.2018.77.8613

    Article  CAS  PubMed  Google Scholar 

  38. Canbay E, Mizumoto A, Ichinose M et al (2014) Outcome data of patients with peritoneal carcinomatosis from gastric origin treated by a strategy of bidirectional chemotherapy prior to cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in a single specialized center in Japan. Ann Surg Oncol 21:1147–1152. https://doi.org/10.1245/s10434-013-3443-2

    Article  PubMed  Google Scholar 

  39. Yang X-J, Huang C-Q, Suo T et al (2011) Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy improves survival of patients with peritoneal carcinomatosis from gastric cancer: final results of a phase III randomized clinical trial. Ann Surg Oncol 18:1575–1581. https://doi.org/10.1245/s10434-011-1631-5

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rudloff UDO, Langan RC, Mullinax JE et al (2014) Impact of maximal cytoreductive surgery plus regional heated intraperitoneal chemotherapy (HIPEC) on outcome of patients with peritoneal carcinomatosis of gastric origin: results of the GYMSSA trial. J Surg Oncol, 110(3):275–284. https://doi.org/10.1002/jso.23633

    Article  PubMed  PubMed Central  Google Scholar 

  41. Glehen O, Gilly FN, Arvieux C et al (2010) Peritoneal carcinomatosis from gastric cancer: a multi-institutional study of 159 patients treated by cytoreductive surgery combined with perioperative intraperitoneal chemotherapy. Ann Surg Oncol 17:2370–2377. https://doi.org/10.1245/s10434-010-1039-7

    Article  PubMed  Google Scholar 

  42. Magge D, Zenati M, Mavanur A et al (2014) Aggressive locoregional surgical therapy for gastric peritoneal carcinomatosis. Ann Surg Oncol 21:1448–1455. https://doi.org/10.1245/s10434-013-3327-5

    Article  PubMed  Google Scholar 

  43. Harmon RL, Sugarbaker PH (2005) Prognostic indicators in peritoneal carcinomatosis from gastrointestinal cancer. Int Semin Surg Oncol 2:3. https://doi.org/10.1186/1477-7800-2-3

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lagast N, Carlier C, Ceelen WP (2018) Pharmacokinetics and tissue transport of intraperitoneal chemotherapy. Surg Oncol Clin N Am 27:477–494. https://doi.org/10.1016/j.soc.2018.02.003

    Article  PubMed  Google Scholar 

  45. Carlier C, Mathys A, De Jaeghere E et al (2017) Tumour tissue transport after intraperitoneal anticancer drug delivery. Int J Hyperth 33:534–542. https://doi.org/10.1080/02656736.2017.1312563

    Article  CAS  Google Scholar 

  46. Jacquet P, Stuart OA, Chang D, Sugarbaker PH (1996) Effects of intra-abdominal pressure on pharmacokinetics and tissue distribution of doxorubicin after intraperitoneal administration. Anticancer Drugs 7:596–603

    Article  CAS  PubMed  Google Scholar 

  47. Esquis P, Consolo D, Magnin G et al (2006) High intra-abdominal pressure enhances the penetration and antitumor effect of intraperitoneal cisplatin on experimental peritoneal carcinomatosis. Ann Surg 244:106–112. https://doi.org/10.1097/01.sla.0000218089.61635.5f

    Article  PubMed  PubMed Central  Google Scholar 

  48. Facy O, Al Samman S, Magnin G et al (2012) High pressure enhances the effect of hyperthermia in intraperitoneal chemotherapy with oxaliplatin: an experimental study. Ann Surg 256:1084–1088. https://doi.org/10.1097/SLA.0b013e3182582b38

    Article  PubMed  Google Scholar 

  49. Kusamura S, Luca F, Baratti D et al (2018) Phase II randomized study on tissue distribution of cisplatin according to different levels of intra abdominal pressure during HIPEC: preliminary results. NCT02949791. Eur J Surg Oncol 44:e7. https://doi.org/10.1016/j.ejso.2018.07.029

    Article  Google Scholar 

  50. Tempfer CB, Hilal Z, Dogan A et al (2018) Concentrations of cisplatin and doxorubicin in ascites and peritoneal tumor nodules before and after pressurized intraperitoneal aerosol chemotherapy (PIPAC) in patients with peritoneal metastasis. Eur J Surg Oncol 44:1112–1117. https://doi.org/10.1016/j.ejso.2018.04.020

    Article  PubMed  Google Scholar 

  51. Cho H-K, Lush RM, Bartlett DL et al (1999) Pharmacokinetics of cisplatin administered by continuous hyperthermic peritoneal perfusion (CHPP) to patients with peritoneal carcinomatosis. J Clin Pharmacol 39:394–401. https://doi.org/10.1177/00912709922007967

    Article  CAS  PubMed  Google Scholar 

  52. Khosrawipour V, Khosrawipour T, Kern AJP et al (2016) Distribution pattern and penetration depth of doxorubicin after pressurized intraperitoneal aerosol chemotherapy (PIPAC) in a postmortem swine model. J Cancer Res Clin Oncol 142:2275–2280. https://doi.org/10.1007/s00432-016-2234-0

    Article  CAS  PubMed  Google Scholar 

  53. Coccolini F, Acocella F, Morosi L et al (2017) High penetration of paclitaxel in abdominal wall of rabbits after hyperthermic intraperitoneal administration of Nab-Paclitaxel compared to standard paclitaxel formulation. Pharm Res 34:1180–1186. https://doi.org/10.1007/s11095-017-2132-4

    Article  CAS  PubMed  Google Scholar 

  54. Jung DH, Son SY, Oo AM et al (2016) Feasibility of hyperthermic pressurized intraperitoneal aerosol chemotherapy in a porcine model. Surg Endosc 30:4258–4264. https://doi.org/10.1007/s00464-015-4738-0

    Article  Google Scholar 

  55. Galluzzi L, Vitale I, Michels J et al (2014) Systems biology of cisplatin resistance: past, present and future. Cell Death Dis 5:e1257–e1218. https://doi.org/10.1038/cddis.2013.428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Barenholz Y (2012) Doxil®—the first FDA-approved nano-drug: lessons learned. J Control Release 160:117–134. https://doi.org/10.1016/j.jconrel.2012.03.020

    Article  CAS  PubMed  Google Scholar 

  57. Franco Y, Vaidya T, Ait-Oudhia S (2018) Anticancer and cardio-protective effects of liposomal doxorubicin in the treatment of breast cancer. Breast Cancer Targets Ther 10:131–141. https://doi.org/10.2147/BCTT.S170239

    Article  Google Scholar 

  58. Bharadwaj R, Yu H (2004) The spindle checkpoint, aneuploidy, and cancer. Oncogene 23:2016

  59. Brito DA, Yang Z, Rieder CL (2008) Microtubules do not promote mitotic slippage when the spindle assembly checkpoint cannot be satisfied. J Cell Biol 182:623 LP–L629

    Article  Google Scholar 

  60. Solaß W, Hetzel A, Nadiradze G et al (2012) Description of a novel approach for intraperitoneal drug delivery and the related device. Surg Endosc 26:1849–1855. https://doi.org/10.1007/s00464-012-2148-0

    Article  PubMed  Google Scholar 

  61. Solass W, Kerb R, Mürdter T et al (2014) Intraperitoneal chemotherapy of peritoneal carcinomatosis using pressurized aerosol as an alternative to liquid solution: first evidence for efficacy. Ann Surg Oncol 21:553–559. https://doi.org/10.1245/s10434-013-3213-1

    Article  PubMed  Google Scholar 

  62. Jacquet P, Sugarbaker PH (1996) Clinical research methodologies in diagnosis and staging of patients with peritoneal carcinomatosis. Cancer Treat Res 82:359–374

    Article  CAS  PubMed  Google Scholar 

  63. Ametsbichler P, Böhlandt A, Nowak D, Schierl R (2018) Occupational exposure to cisplatin/oxaliplatin during pressurized intraperitoneal aerosol chemotherapy (PIPAC)?. Eur J Surg Oncol. https://doi.org/10.1016/j.ejso.2018.05.020

    Article  PubMed  Google Scholar 

  64. Solaß W, Giger-Pabst U, Zieren J, Reymond MA (2013) Pressurized intraperitoneal aerosol chemotherapy (PIPAC): occupational health and safety aspects. Ann Surg Oncol 20:3504–3511. https://doi.org/10.1245/s10434-013-3039-x

    Article  PubMed  PubMed Central  Google Scholar 

  65. Weinreich J, Struller F, Sautkin I et al (2018) Chemosensitivity of various peritoneal cancer cell lines to HIPEC and PIPAC: comparison of an experimental duplex drug to standard drug regimens in vitro. Investig New Drugs. https://doi.org/10.1007/s10637-018-0641-6

    Article  Google Scholar 

  66. Tempfer CB, Giger-Pabst U, Seebacher V et al (2018) A phase I, single-arm, open-label, dose escalation study of intraperitoneal cisplatin and doxorubicin in patients with recurrent ovarian cancer and peritoneal carcinomatosis. Gynecol Oncol 150:23–30. https://doi.org/10.1016/j.ygyno.2018.05.001

    Article  CAS  PubMed  Google Scholar 

  67. Sleeman JP (2017) PIPAC puts pressure on peritoneal metastases from pancreatic cancer. Clin Exp Metastasis 34:291–293. https://doi.org/10.1007/s10585-017-9851-0

    Article  CAS  PubMed  Google Scholar 

  68. Struller F, Horvath P, Solass W et al (2017) Pressurized intraperitoneal aerosol chemotherapy with low-dose cisplatin and doxorubicin (PIPAC C/D) in patients with gastric cancer and peritoneal metastasis (PIPAC-GA1). J Clin Oncol 35:99. https://doi.org/10.1200/JCO.2017.35.4_suppl.99

    Article  Google Scholar 

  69. Nadiradze G, Giger-Pabst U, Zieren J et al (2016) Pressurized intraperitoneal aerosol chemotherapy (PIPAC) with low-dose cisplatin and doxorubicin in gastric peritoneal metastasis. J Gastrointest Surg 20:367–373. https://doi.org/10.1007/s11605-015-2995-9

    Article  PubMed  Google Scholar 

  70. Alyami M, Gagniere J, Sgarbura O et al (2017) Multicentric initial experience with the use of the pressurized intraperitoneal aerosol chemotherapy (PIPAC) in the management of unresectable peritoneal carcinomatosis. Eur J Surg Oncol 43:2178–2183. https://doi.org/10.1016/j.ejso.2017.09.010

    Article  PubMed  Google Scholar 

  71. Odendahl K, Solass W, Demtröder C et al (2015) Quality of life of patients with end-stage peritoneal metastasis treated with pressurized intraperitoneal aerosol chemotherapy (PIPAC). Eur J Surg Oncol 41:1379–1385. https://doi.org/10.1016/j.ejso.2015.06.001

    Article  CAS  PubMed  Google Scholar 

  72. Girshally R, Demtröder C, Albayrak N et al (2016) Pressurized intraperitoneal aerosol chemotherapy (PIPAC) as a neoadjuvant therapy before cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. World J Surg Oncol 14:253. https://doi.org/10.1186/s12957-016-1008-0

    Article  PubMed  PubMed Central  Google Scholar 

  73. Nowacki M, Grzanka D, Zegarski W (2018) Pressurized intraperitoneal aerosol chemotheprapy after misdiagnosed gastric cancer: case report and review of the literature. World J Gastroenterol 24:2130–2136. https://doi.org/10.3748/wjg.v24.i19.2130

    Article  PubMed  PubMed Central  Google Scholar 

  74. Chan DL, Sjoquist KM, Goldstein D et al (2017) The effect of anti-angiogenic agents on overall survival in metastatic oesophago-gastric cancer: a systematic review and meta-analysis. PLoS ONE 12:e0172307. https://doi.org/10.1371/journal.pone.0172307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Thuss-Patience PC, Kretzschmar A, Dogan Y et al (2011) Docetaxel and capecitabine for advanced gastric cancer: investigating dose-dependent efficacy in two patient cohorts. Br J Cancer 105:505–512. https://doi.org/10.1038/bjc.2011.278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Khomiakov V, Ryabov A, Bolotina LV et al (2017) Bidirectional chemotherapy in gastric cancer (GC) with peritoneal carcinomatosis (PC) combining intravenous chemotherapy with intraperitoneal chemotherapy with low-dose cisplatin and doxorubicin administered as a pressurized aerosol: an open-label, phase. J Clin Oncol 35:e15532–e15532. https://doi.org/10.1200/JCO.2017.35.15_suppl.e15532

    Article  Google Scholar 

  77. Alyami M, Bonnot PE, Villeneuve L et al (2018) Pressurized intraperitoneal aerosol chemotherapy (PIPAC) for nonresectable peritoneal carcinomatosis from gastric cancer. J Clin Oncol 36:149. https://doi.org/10.1200/JCO.2018.36.4_suppl.149

    Article  Google Scholar 

  78. Tempfer CB, Rezniczek GA, Ende P (2015) Pressurized intraperitoneal aerosol chemotherapy with cisplatin and doxorubicin in women with peritoneal carcinomatosis: a cohort study. Anticancer Res 35:6723–6730

    CAS  PubMed  Google Scholar 

  79. Khomyakov V, Ryabov A, Ivanov A et al (2016) Bidirectional chemotherapy in gastric cancer with peritoneal metastasis combining intravenous XELOX with intraperitoneal chemotherapy with low-dose cisplatis and Doxorubicin administered as a pressurized aerosol: an open-label, phase-2 study (PIPAC-GA2). 1:159–166. https://doi.org/10.1515/pap-2016-0017

  80. Blanco A, Giger-Pabst U, Solass W et al (2013) Renal and hepatic toxicities after pressurized intraperitoneal aerosol chemotherapy (PIPAC). Ann Surg Oncol 20:2311–2316. https://doi.org/10.1245/s10434-012-2840-2

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ndaw S, Hanser O, Kenepekian V et al (2018) Occupational exposure to platinum drugs during intraperitoneal chemotherapy. Biomonitoring and surface contamination. Toxicol Lett. https://doi.org/10.1016/j.toxlet.2018.05.031

    Article  PubMed  Google Scholar 

  82. Jansen-Winkeln B, Thieme R, Haase L et al (2018) Perioperative sicherheit der intraperitonealen aerosolchemotherapie. Der Chir. https://doi.org/10.1007/s00104-018-0667-5

    Article  Google Scholar 

  83. Graversen M, Detlefsen S, Pfeiffer P et al (2018) Severe peritoneal sclerosis after repeated pressurized intraperitoneal aerosol chemotherapy with oxaliplatin (PIPAC OX): report of two cases and literature survey. Clin Exp Metastasis 35:103–108. https://doi.org/10.1007/s10585-018-9895-9

    Article  CAS  PubMed  Google Scholar 

  84. Nowacki M, Alyami M, Villeneuve L et al (2018) Multicenter comprehensive methodological and technical analysis of 832 pressurized intraperitoneal aerosol chemotherapy (PIPAC) interventions performed in 349 patients for peritoneal carcinomatosis treatment: an international survey study. Eur J Surg Oncol. https://doi.org/10.1016/j.ejso.2018.02.014

    Article  PubMed  Google Scholar 

  85. Dumont F, Senellart H, Pein F et al (2018) Phase I/II study of oxaliplatin dose escalation via a laparoscopic approach using pressurized aerosol intraperitoneal chemotherapy (PIPOX trial) for nonresectable peritoneal metastases of digestive cancers (stomach, small bowel and colorectal): rationale and design. Pleura Perit. https://doi.org/10.1515/pp-2018-0120

    Article  Google Scholar 

  86. Goetze TO, Al-Batran SE, Pabst U et al (2018) Pressurized intraperitoneal aerosol chemotherapy (PIPAC) in combination with standard of care chemotherapy in primarily untreated chemo naive upper gi-adenocarcinomas with peritoneal seeding—A phase II/III trial of the AIO/CAOGI/ACO. Pleura Perit. https://doi.org/10.1515/pp-2018-0113

    Article  Google Scholar 

  87. Eveno C, Jouvin I, Pocard M (2018) PIPAC EstoK 01: pressurized intraperitoneal aerosol chemotherapy with cisplatin and doxorubicin (PIPAC C/D) in gastric peritoneal metastasis : a randomized and multicenter phase II study. Pleura Perit 1–7. https://doi.org/10.1515/pap-2018-0116

  88. Minnaert A-K, Dakwar GR, Benito JM et al (2017) High-pressure nebulization as application route for the peritoneal administration of sirna complexes. Macromol Biosci 17:1700024. https://doi.org/10.1002/mabi.201700024

    Article  CAS  Google Scholar 

  89. Ceelen WP, Van de Sande L (2018) PIPAC Nab-pac for stomach, pancreas, breast and ovarian cancer (PIPAC-nabpac). https://clinicaltrials.gov/ct2/show/NCT03304210

  90. Mortensen MB (2017) Treatment of Peritoneal carcinomatosis with pressurized intraperitoneal aerosol chemotherapy—(PIPAC-OPC2). https://clinicaltrials.gov/ct2/show/NCT03287375

  91. So J, Guowei K (2017) Pressurized Intraperitoneal aerosol chemotherapy (PIPAC) with oxaliplatin in patients with peritoneal carcinomatosis (PIPAC). https://clinicaltrials.gov/ct2/show/NCT03172416

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beate Rau.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alberto, M., Brandl, A., Garg, P.K. et al. Pressurized intraperitoneal aerosol chemotherapy and its effect on gastric-cancer-derived peritoneal metastases: an overview. Clin Exp Metastasis 36, 1–14 (2019). https://doi.org/10.1007/s10585-019-09955-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-019-09955-4

Keywords

Navigation