Skip to main content

Advertisement

Log in

Protein pathway activation mapping of colorectal metastatic progression reveals metastasis-specific network alterations

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The mechanism by which tissue microecology influences invasion and metastasis is largely unknown. Recent studies have indicated differences in the molecular architecture of the metastatic lesion compared to the primary tumor, however, systemic analysis of the alterations within the activated protein signaling network has not been described. Using laser capture microdissection, protein microarray technology, and a unique specimen collection of 34 matched primary colorectal cancers (CRC) and synchronous hepatic metastasis, the quantitative measurement of the total and activated/phosphorylated levels of 86 key signaling proteins was performed. Activation of the EGFR–PDGFR-cKIT network, in addition to PI3K/AKT pathway, was found uniquely activated in the hepatic metastatic lesions compared to the matched primary tumors. If validated in larger study sets, these findings may have potential clinical relevance since many of these activated signaling proteins are current targets for molecularly targeted therapeutics. Thus, these findings could lead to liver metastasis specific molecular therapies for CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CRC:

Colorectal cancer

LCM:

Laser capture microdissection

RPMA:

Reverse phase protein microarray

EGFR:

Epithelial growth factor

RTK:

Receptor tyrosine kinase

References

  1. Siegel R, Naishadham D (2012) Cancer statistics, 2012. CA Cancer J Clin 62(1):10–29

    Article  PubMed  Google Scholar 

  2. Field K, Lipton L (2007) Metastatic colorectal cancer—past, progress and future. World J Gastroenterol 13(28):3806–3815

    PubMed  CAS  Google Scholar 

  3. Kopetz S, Chang GJ, Overman MJ et al (2009) Improved survival in metastatic colorectal cancer is associated with adoption of hepatic resection and improved chemotherapy. J Clin Oncol 27(22):3677–3683

    Article  PubMed  Google Scholar 

  4. Luzzi KJ, MacDonald IC, Schmidt EE et al (1998) Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol 153(3):865–873

    Article  PubMed  CAS  Google Scholar 

  5. Paget S (1989) The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev 8(2):98–101

    PubMed  CAS  Google Scholar 

  6. Joyce T, Pintzas A (2007) Microarray analysis to reveal genes involved in colon carcinogenesis. Expert Opin Pharmacother 8(7):895–900

    Article  PubMed  CAS  Google Scholar 

  7. Li M, Lin YM, Hasegawa S et al (2004) Genes associated with liver metastasis of colon cancer identified by genome-wide cDNA microarray. Int J Oncol 24(2):305–312

    PubMed  Google Scholar 

  8. Bertucci F, Salas S, Eysteries S et al (2004) Gene expression profiling of colon cancer by DNA microarrays and correlation with histoclinical parameters. Oncogene 23(7):1377–1391

    Article  PubMed  CAS  Google Scholar 

  9. Houlston RS (2001) What we could do now: molecular pathology of colorectal cancer. Mol Pathol 54(4):206–214

    Article  PubMed  CAS  Google Scholar 

  10. Driouch K, Landemaine T, Sin S et al (2007) Gene arrays for diagnosis, prognosis and treatment of breast cancer metastasis. Clin Exp Metastasis 24(8):575–585

    Article  PubMed  CAS  Google Scholar 

  11. Mendez E, Fan W, Choi P et al (2007) Tumor-specific genetic expression profile of metastatic oral squamous cell carcinoma. Head Neck 29(9):803–814

    Article  PubMed  Google Scholar 

  12. Petricoin EF III, Bichsel VE, Calvert VS et al (2005) Mapping molecular networks using proteomics: a vision for patient-tailored combination therapy. J Clin Oncol 23(15):3614–3621

    Article  PubMed  CAS  Google Scholar 

  13. Gulmann C, Sheehan KM, Kay EW et al (2006) Array-based proteomics: mapping of protein circuitries for diagnostics, prognostics, and therapy guidance in cancer. J Pathol 208(5):595–606

    Article  PubMed  CAS  Google Scholar 

  14. Wulfkuhle JD, Edmiston KH, Liotta LA et al (2006) Technology insight: pharmacoproteomics for cancer—promises of patient-tailored medicine using protein microarrays. Nat Clin Pract Oncol 3(5):256–268

    Article  PubMed  CAS  Google Scholar 

  15. Anderson L, Seilhamer J (1997) A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18(3–4):533–537

    Article  PubMed  CAS  Google Scholar 

  16. Gygi SP, Rochon Y, Franza BR et al (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19(3):1720–1730

    PubMed  CAS  Google Scholar 

  17. Hynes NE, Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5(5):341–354

    Article  PubMed  CAS  Google Scholar 

  18. Espina V, Wulfkuhle JD, Calvert VS et al (2006) Laser-capture microdissection. Nat Protoc 1(2):586–603

    Article  PubMed  CAS  Google Scholar 

  19. Espina V, Heiby M, Pierobon M et al (2007) Laser capture microdissection technology. Expert Rev Mol Diagn 7(5):647–657

    Article  PubMed  CAS  Google Scholar 

  20. VanMeter A, Signore M, Pierobon M et al (2007) Reverse-phase protein microarrays: application to biomarker discovery and translational medicine. Expert Rev Mol Diagn 7(5):625–633

    Article  PubMed  CAS  Google Scholar 

  21. Speer R, Wulfkuhle J, Espina V et al (2007) Development of reverse phase protein microarrays for clinical applications and patient-tailored therapy. Cancer Genomics Proteomics 4(3):157–164

    PubMed  CAS  Google Scholar 

  22. Speer R, Wulfkuhle JD, Liotta LA et al (2005) Reverse-phase protein microarrays for tissue-based analysis. Curr Opin Mol Ther 7(3):240–245

    PubMed  CAS  Google Scholar 

  23. Espina V, Mehta AI, Winters ME et al (2003) Protein microarrays: molecular profiling technologies for clinical specimens. Proteomics 3(11):2091–2100

    Article  PubMed  CAS  Google Scholar 

  24. Wulfkuhle JD, Speer R, Pierobon M et al (2008) Multiplexed cell signaling analysis of human breast cancer applications for personalized therapy. J Proteome Res 7(4):1508–1517

    Article  PubMed  CAS  Google Scholar 

  25. Winters M, Dabir B, Yu M et al (2007) Constitution and quantity of lysis buffer alters outcome of reverse phase protein microarrays. Proteomics 7(22):4066–4068

    Article  PubMed  CAS  Google Scholar 

  26. Pierobon M, Calvert V, Belluco C et al (2009) Multiplexed cell signaling analysis of metastatic and nonmetastatic colorectal cancer reveals COX2-EGFR signaling activation as a potential prognostic pathway biomarker. Clin Colorectal Cancer 8(2):110–117

    Article  CAS  Google Scholar 

  27. Markowitz SD, Bertagnolli MM (2009) Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med 361(25):2449–2460

    Article  PubMed  CAS  Google Scholar 

  28. Jones S, Chen WD, Parmigiani G et al (2008) Comparative lesion sequencing provides insights into tumor evolution. Proc Natl Acad Sci USA 105(11):4283–4288

    Article  PubMed  CAS  Google Scholar 

  29. Scartozzi M, Bearzi I, Berardi R et al (2004) Epidermal growth factor receptor (EGFR) status in primary colorectal tumors does not correlate with EGFR expression in related metastatic sites: implications for treatment with EGFR-targeted monoclonal antibodies. J Clin Oncol 22(23):4772–4778

    Article  PubMed  CAS  Google Scholar 

  30. Italiano A, Hostein I, Soubeyran I et al (2010) KRAS and BRAF mutational status in primary colorectal tumors and related metastatic sites: biological and clinical implications. Ann Surg Oncol 17(5):1429–1434

    Article  PubMed  Google Scholar 

  31. Knijn N, Mekenkamp LJ, Klomp M et al (2011) KRAS mutation analysis: a comparison between primary tumors and matched liver metastases in 305 colorectal cancer patients. Br J Cancer 104(6):1020–1026

    Article  PubMed  CAS  Google Scholar 

  32. Vermaat JS, Nijman IJ, Koudijs MJ et al (2012) Primary colorectal cancers and their subsequent hepatic metastases are genetically different: implications for selection of patients for targeted treatment. Clin Cancer Res 18(3):688–699

    Article  PubMed  CAS  Google Scholar 

  33. Ericson K, Gan C, Cheong I et al (2010) Genetic inactivation of AKT1, AKT2, and PDPK1 in human colorectal cancer cells clarifies their roles in tumor growth regulation. Proc Natl Acad Sci USA 107(6):2598–2603

    Article  PubMed  CAS  Google Scholar 

  34. Rychahou PG, Kang J, Gulhati P et al (2008) Akt2 overexpression plays a critical role in the establishment of colorectal cancer metastasis. Proc Natl Acad Sci USA 105(51):20315–20320

    Article  PubMed  CAS  Google Scholar 

  35. Loupakis F, Pollina L, Stasi I et al (2009) PTEN expression and KRAS mutations on primary tumors and metastases in the prediction of benefit from cetuximab plus irinotecan for patients with metastatic colorectal cancer. J Clin Oncol 27(16):2622–2629

    Article  PubMed  CAS  Google Scholar 

  36. Espina V, Edmiston KH, Heiby M et al (2008) A portrait of tissue phosphoprotein stability in the clinical tissue procurement process. Mol Cell Proteomics 7(10):1998–2018

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Italian Istituto Superiore di Sanita` in the framework of the Italy/USA cooperation agreement between the US Department of Health and Human Services, George Mason University, and the Italian Ministry of Public Health, as well as the generous support of the College of Science, George Mason University.

Conflict of interest

The authors are inventors on US Government and University assigned patents and patent applications that cover aspects of the technologies discussed. As inventors, they are entitled to receive royalties as provided by US Law and George Mason University policy. VC, MP, LL, and EP are consultants to and shareholders of Theranostics Health, LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariaelena Pierobon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silvestri, A., Calvert, V., Belluco, C. et al. Protein pathway activation mapping of colorectal metastatic progression reveals metastasis-specific network alterations. Clin Exp Metastasis 30, 309–316 (2013). https://doi.org/10.1007/s10585-012-9538-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-012-9538-5

Keywords

Navigation